Suppr超能文献

评估非随机真实世界数据分析在监管决策中的应用。

Evaluating the Use of Nonrandomized Real-World Data Analyses for Regulatory Decision Making.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Office of Medical Policy, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.

出版信息

Clin Pharmacol Ther. 2019 Apr;105(4):867-877. doi: 10.1002/cpt.1351. Epub 2019 Feb 25.

Abstract

The analysis of longitudinal healthcare data outside of highly controlled parallel-group randomized trials, termed real-world evidence (RWE), has received increasing attention in the medical literature. In this paper, we discuss the potential role of RWE in drug regulation with a focus on the analysis of healthcare databases. We present several cases in which RWE is already used and cases in which RWE could potentially support regulatory decision making. We summarize key issues that investigators and regulators should consider when designing or evaluating such studies, and we propose a structured process for implementing analyses that facilitates regulatory review. We evaluate the empirical evidence base supporting the validity, transparency, and reproducibility of RWE from analysis of healthcare databases and discuss the work that still needs to be done to ensure that such analyses can provide decision-ready evidence on the effectiveness and safety of treatments.

摘要

在高度对照平行组随机试验之外,对纵向医疗保健数据进行分析,被称为真实世界证据(RWE),在医学文献中受到越来越多的关注。在本文中,我们讨论了 RWE 在药物监管中的潜在作用,重点是对医疗保健数据库的分析。我们介绍了 RWE 已经被使用的几个案例以及 RWE 可能支持监管决策的案例。我们总结了研究人员和监管机构在设计或评估此类研究时应考虑的关键问题,并提出了一个结构化的分析流程,以方便监管审查。我们评估了从医疗保健数据库分析中支持 RWE 的有效性、透明度和可重复性的经验证据基础,并讨论了为确保此类分析能够提供关于治疗效果和安全性的决策就绪证据而仍需完成的工作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验