Luo Yanzhu, Huang Dekang, Liang Chennan, Wang Pei, Han Kang, Wu Buke, Cao Feifei, Mai Liqiang, Chen Hao
College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.
Small. 2019 Feb;15(7):e1804706. doi: 10.1002/smll.201804706. Epub 2019 Jan 13.
Preventing the aggregation of nanosized electrode materials is a key point to fully utilize the advantage of the high capacity. In this work, a facile and low-cost surface solvation treatment is developed to synthesize Fe VO hierarchical porous microparticles, which efficiently prevents the aggregation of the Fe VO primary nanoparticles. The reaction between alcohol molecules and surface hydroxy groups is confirmed by density functional theory calculations and Fourier transform infrared spectroscopy. The electrochemical mechanism of Fe VO as lithium-ion battery anode is characterized by in situ X-ray diffraction for the first time. This electrode material is capable of delivering a high reversible discharge capacity of 799 mA h g at 0.5 A g with a high initial coulombic efficiency of 79%, and the capacity retention is 78% after 500 cycles. Moreover, a remarkable reversible discharge capacity of 679 mA h g is achieved at 5 A g . Furthermore, when tested as sodium-ion battery anode, a high reversible capacity of 382 mA h g can be delivered at the current density of 1 A g , which still retains at 229 mA h g after 1000 cycles. The superior electrochemical performance makes it a potential anode material for high-rate and long-life lithium/sodium-ion batteries.
防止纳米级电极材料的聚集是充分利用其高容量优势的关键所在。在本工作中,开发了一种简便且低成本的表面溶剂化处理方法来合成FeVO分级多孔微粒,该方法能有效防止FeVO初级纳米颗粒的聚集。通过密度泛函理论计算和傅里叶变换红外光谱证实了醇分子与表面羟基之间的反应。首次利用原位X射线衍射对FeVO作为锂离子电池负极的电化学机理进行了表征。这种电极材料在0.5 A g的电流密度下能够提供799 mA h g的高可逆放电容量,初始库仑效率高达79%,在500次循环后容量保持率为78%。此外,在5 A g的电流密度下实现了679 mA h g的显著可逆放电容量。此外,当作为钠离子电池负极进行测试时,在1 A g的电流密度下可提供382 mA h g的高可逆容量,在1000次循环后仍保持在229 mA h g。其优异的电化学性能使其成为高倍率和长寿命锂/钠离子电池的潜在负极材料。