Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , Suzhou 215123 , China.
Institute of Organic Optoelectronics , Jiangsu Industrial Technology Research Institute (JITRI) , Wujiang, Suzhou , Jiangsu 215211 , P. R. China.
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5298-5305. doi: 10.1021/acsami.8b22317. Epub 2019 Jan 25.
The core/shell micro-/nanostructures with versatility, tunability, stability, dispersibility, and biocompatibility are widely applied in optics, biomedicine, catalysis, and energy. Organic micro-/nanocrystals have significant applications in miniaturized optoelectronics because of their controllable self-assembly behavior, tunable optical properties, and tailor-made molecular structure. Nevertheless, the advanced organic core/shell micro-/nanostructures, which possess multifunctionality, flexibility, and higher compatibility, are rarely demonstrated because of the dynamic nature of molecular self-assembly and the complex epitaxial relationship of material combination. Herein, we demonstrate the one-dimensional organic core/shell micro-/nanostructures with component interchange, which originates from the 4,4'-((1 E,1' E)-(2,5-dimethoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (DPEpe) single-crystal microrods or the DPEpe-HCl single-crystal microrods after a reversible protonation or deprotonation process. Notably, the DPEpe/DPEpe-HCl core/shell microrods display vivid visualizations of tunable emission color via an efficient energy-transfer process during the stepwise formation of a shell layer. More significantly, these DPEpe/DPEpe-HCl and DPEpe-HCl/DPEpe core/shell microrods cooperatively demonstrate the multicolor optical waveguide properties continuously adjusted from green [CIE (0.326, 0.570)], to yellow [CIE (0.516, 0.465)], and to red [CIE (0.614, 0.374)]. Our investigation provides a new strategy to fabricate the organic core/shell micro-/nanostructures, which can eventually contribute to the advanced organic optoelectronics at the micro-/nanoscale.
具有多功能性、可调谐性、稳定性、分散性和生物相容性的核/壳微/纳结构在光学、生物医学、催化和能源等领域得到了广泛应用。有机微/纳晶体由于其可控的自组装行为、可调谐的光学性质和定制的分子结构,在小型化光电子学中具有重要的应用。然而,由于分子自组装的动态性质和材料组合的复杂外延关系,具有多功能性、灵活性和更高兼容性的先进有机核/壳微/纳结构很少得到证明。在此,我们展示了具有可互换成分的一维有机核/壳微/纳结构,这些结构源于 4,4'-((1 E,1' E)-(2,5-二甲氧基-1,4-亚苯基)双(乙烯-2,1-二基))二吡啶(DPEpe)单晶微棒或 DPEpe-HCl 单晶微棒,经过可逆质子化或去质子化过程。值得注意的是,DPEpe/DPEpe-HCl 核/壳微棒在壳层逐步形成过程中通过有效的能量转移过程显示出可调发射颜色的生动可视化。更重要的是,这些 DPEpe/DPEpe-HCl 和 DPEpe-HCl/DPEpe 核/壳微棒协同展示了从绿色[CIE(0.326,0.570)]、黄色[CIE(0.516,0.465)]到红色[CIE(0.614,0.374)]的连续可调的多色光学波导性质。我们的研究为制备有机核/壳微/纳结构提供了一种新策略,最终有助于在微/纳尺度上实现先进的有机光电。