Suppr超能文献

快速多尺度计算筛选 OLED 主体材料。

Rapid Multiscale Computational Screening for OLED Host Materials.

机构信息

Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5276-5288. doi: 10.1021/acsami.8b16225. Epub 2019 Jan 29.

Abstract

The design of new host materials for phosphorescent organic light emitting diodes (OLEDs) is challenging because several physical property requirements must be met simultaneously. A triplet energy ( E) higher than that of the chosen emitting dopant, appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels, good charge carrier transport, and high stability are all required. Here, computational methods were used to screen structures to find the most promising candidates for OLED hosts. The screening was carried out in three Tiers. The Tier 1 selection, based on density functional theory calculations, identified a set of eight molecular structures with E > 2.9 eV, suitable for hosting blue phosphorescent dopants such as iridium(III)bis((4,6-di-fluorophenyl)-pyridinato-N,C2')picolinate. Phenanthro[9,10- d]imidazole was chosen as the starting point for the Tier 2 selection. Thirty-seven unique molecular structures were enumerated by isoelectronic nitrogen transmutation of up to two CH fragments of the phenanthrene. Three molecules, that is, imidazo[4,5- f]-phenanthrolines with nitrogens at the 1,10-, 3,8-, and 4,7-positions, were selected for Tier 3, which involved the use of molecular dynamics simulations and electron coupling calculations to predict differences in charge transport between the three materials. The three were explored experimentally through synthesis and device fabrication. The singlet, triplet, and frontier orbital energies computed using single-molecule density functional theory calculations ( Tiers 1 and 2) were consistent with the experimental values in a fluid solution, and the multiscale modeling scheme ( Tier 3) correctly predicted the poor device performance of one material. We conclude that screening host materials using only single-molecule quantum mechanical data was not sufficient to predict whether a given material would make a good OLED host with certainty; however, they can be used to screen out materials that are destined to fail due to low singlet/triplet energies or a poor match of the frontier orbital energies to the dopant or transport materials.

摘要

设计新型磷光有机发光二极管(OLED)的主体材料极具挑战性,因为需要同时满足多项物理性能要求。主体材料的三重态能量(E)必须高于所选发光掺杂剂,最高占据分子轨道/最低未占据分子轨道能级适当,具有良好的电荷载流子传输性能和高稳定性。在此,我们采用计算方法筛选结构,以找到最有希望成为 OLED 主体材料的候选物。筛选分三个阶段进行。基于密度泛函理论计算的第一阶段选择,确定了一组 8 种分子结构,它们的 E 值大于 2.9 eV,适合作为蓝色磷光掺杂剂(如铱(III)双(4,6-二氟苯基)吡啶-N,C2')吡啶甲酸酯的主体材料。苯并[9,10-d]咪唑被选为第二阶段选择的起始点。通过对苯并菲中多达两个 CH 片段的等电子氮取代,枚举了 37 种独特的分子结构。选择了三种分子,即氮位于 1,10-、3,8-和 4,7-位的咪唑并[4,5-f]-苯并咪唑啉,用于第三阶段,该阶段涉及使用分子动力学模拟和电子耦合计算来预测三种材料之间的电荷传输差异。通过合成和器件制备对这三种材料进行了实验探索。基于单分子密度泛函理论计算(第一阶段和第二阶段)计算得到的单重态、三重态和前沿轨道能量与溶液中的实验值一致,多尺度建模方案(第三阶段)正确预测了一种材料的器件性能较差。我们得出结论,仅使用单分子量子力学数据筛选主体材料不足以确定给定材料是否肯定会成为一种良好的 OLED 主体材料;但是,它们可以用于筛选由于单重态/三重态能量低或前沿轨道能量与掺杂剂或传输材料不匹配而注定会失败的材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验