CNRS, Sorbonne Université, Morphogenesis of Macro Algae, UMR8227, Station Biologique, Roscoff, France.
SCRIPPS Institution of Oceanography, University of California, San Diego, San Diego, California, United States of America.
PLoS Biol. 2019 Jan 14;17(1):e2005258. doi: 10.1371/journal.pbio.2005258. eCollection 2019 Jan.
Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 μm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.
顶端生长在花粉管、根毛、真菌和卵菌的菌丝中得到了广泛的研究,是地球上分布最广泛的单向生长过程。它确保了空间殖民、营养掠夺、受精和共生,其生长速度高达 800 μm h-1。尽管膨压驱动的生长直观上是可以想象的,但对顶端生长中起作用的物理过程进行更仔细的检查会引发一个悖论:生长发生在生物物理力较低的地方,因为尖端曲率的增加。迄今为止,所有研究过的顶端生长细胞都依赖于通过在尖端极化为细胞壁疏松化合物的排泄来调节细胞壁延展性。在这里,我们使用一系列细胞水平的定量测量和生物物理模拟方法来证明褐藻马尾藻具有一种原始的顶端生长机制。在这种藻类中,细胞壁厚度的陡梯度的建立可以补偿尖端曲率的变化,从而调节顶端细胞内的细胞壁应力。自举分析支持该过程的稳健性,并且荧光恢复后光漂白(FRAP)实验证实了模型推断的顶端细胞柄中活跃的囊泡运输。对生长素的响应,生物物理测量与模型一致地发生变化。尽管我们不能严格排除机械性能梯度在马尾藻形态发生中的参与,但细胞壁力学的粘塑性模型强烈表明,褐藻已经进化出一种替代的顶端生长策略。该策略主要基于细胞壁厚度的控制,而不是细胞壁机械性能的波动。