Suppr超能文献

评估计算机生成生物分子的质量:新构象的发现。

Assessing the Quality of in Silico Produced Biomolecules: The Discovery of a New Conformer.

机构信息

Department of Mathematics and Physics, "Ennio De Giorgi" , University of Salento , Via Monteroni , I-73100 Lecce , Italy.

Department of Biological and Environmental Sciences and Technologies , University of Salento , Via Monteroni , I-73100 Lecce , Italy.

出版信息

J Phys Chem B. 2019 Feb 14;123(6):1265-1273. doi: 10.1021/acs.jpcb.8b11456. Epub 2019 Feb 1.

Abstract

The computational procedures for predicting the 3D structure of aptamers interacting with different biological molecules have gained increasing attention in recent years. The information acquired through these methods represents a crucial input for research, especially when relevant crystallographic data are not available. A number of software programs able to perform macromolecular docking are currently accessible, leading to the prediction of the quaternary structure of complexes formed by two or more interacting biological macromolecules. Nevertheless, the scoring protocols employed for ranking the candidate structures do not always produce satisfactory results, making difficult the identification of structures that are most likely to occur in nature. In this paper, we propose a novel procedure to improve the predictive performances of computational scoring protocols, using a maximum likelihood estimate based on topological and electrical properties of interacting biomolecules. The reliability of the new computational approach, enabling the ranking of aptamer-protein configurations produced by an open source docking program, has been assessed by its successful application to a set of antiangiopoietin aptamers, for which experimental data highlighting the sequence-dependent affinity toward the target protein are available. The procedure led to the identification of two main types of aptamer conformers involved in angiopoietin binding. Interestingly, one of these reproduces the arrangement of angiopoietin with its natural target, tyrosine kinase, while the other one is completely unexpected. The possible scenarios related to these results have been discussed. The methodology here described can be used to refine the outcomes of different computational procedures and can be applied to a wide range of biological molecules, thus representing a new tool for guiding the design of bioinspired sensors with enhanced selectivity.

摘要

近年来,预测与不同生物分子相互作用的适体 3D 结构的计算程序越来越受到关注。通过这些方法获得的信息代表了研究的关键输入,特别是在没有相关晶体学数据的情况下。目前有许多能够进行大分子对接的软件程序,可用于预测由两个或更多相互作用的生物大分子形成的复合物的四级结构。然而,用于对候选结构进行排序的评分方案并不总是产生令人满意的结果,使得识别最有可能在自然界中出现的结构变得困难。在本文中,我们提出了一种改进计算评分方案预测性能的新方法,该方法使用基于相互作用生物分子拓扑和电学性质的最大似然估计。新计算方法的可靠性已通过其成功应用于一组抗血管生成素适体得到评估,该方法可对由开源对接程序产生的适体-蛋白质构象进行排序,并且可获得突出靶向蛋白质序列依赖性亲和力的实验数据。该程序确定了两种主要的适体构象类型,它们都参与了血管生成素的结合。有趣的是,其中一种构象重现了血管生成素与其天然靶标酪氨酸激酶的排列,而另一种则完全出乎意料。已经讨论了与这些结果相关的可能情况。这里描述的方法可用于改进不同计算程序的结果,并可应用于广泛的生物分子,因此是指导具有增强选择性的仿生传感器设计的新工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验