Suppr超能文献

观察到 HeLa 细胞在多泡细胞相互作用下经历的细胞周期依赖性的膜通透性和活力变化。

Cell-cycle-dependences of membrane permeability and viability observed for HeLa cells undergoing multi-bubble-cell interactions.

机构信息

Key Laboratory of Modern Acoustics (MOE), School of Physics, Nanjing University, Nanjing 210093, China.

The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.

出版信息

Ultrason Sonochem. 2019 May;53:178-186. doi: 10.1016/j.ultsonch.2019.01.005. Epub 2019 Jan 7.

Abstract

Microbubble-mediated sonoporation is a promising strategy for intracellular gene/drug delivery, but the biophysical mechanisms involved in the interactions between microbubbles and cells are not well understood. Here, HeLa cells were synchronized in individual cycle phases, then the cell-cycle-dependences of the membrane permeability and viability of HeLa cells undergoing multi-bubble sonoporation were evaluated using focused ultrasound exposure apparatus coupled passive cavitation detection system. The results indicated that: (1) the microbubble cavitation activity should be independent on cell cycle phases; (2) G-phase cells with the largest Young's modulus were the most robust against microbubble-mediated sonoporation; (3) G/M-phase cells exhibited the greatest accumulated FITC uptake with the lowest viability, which should be mainly attributed to the chemical effect of synchronization drugs; and (4) more important, S-phase cells with the lowest stiffness seemed to be the most susceptible to the mechanical effect generated by microbubble cavitation activity, which resulted in the greatest enhancement in sonoporation-facilitated membrane permeabilization without further scarifying their viability. The current findings may benefit ongoing efforts aiming to pursue rational utilization of microbubble-mediated sonoporation in cell-cycle-targeted gene/drug delivery for cancer therapy.

摘要

超声空化微泡转染是一种很有前途的细胞内基因/药物传递策略,但微泡与细胞相互作用的生物物理机制还不是很清楚。在这里,通过使用聚焦超声暴露装置和被动空化检测系统,将 HeLa 细胞在单个细胞周期阶段同步化,然后评估多泡超声转染过程中 HeLa 细胞的细胞膜通透性和活力的细胞周期依赖性。结果表明:(1)微泡空化活性应独立于细胞周期阶段;(2)杨氏模量最大的 G 期细胞对微泡介导的超声转染最具抵抗力;(3)G/M 期细胞表现出最大的累积 FITC 摄取和最低的活力,这主要归因于同步化药物的化学效应;(4)更重要的是,杨氏模量最低的 S 期细胞似乎最容易受到微泡空化活性产生的机械效应的影响,这导致了超声转染促进的膜通透性的最大增强,而不会进一步损害其活力。目前的研究结果可能有助于正在进行的努力,旨在将超声空化微泡转染用于癌症治疗的细胞周期靶向基因/药物传递,以实现合理利用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验