Suppr超能文献

用于软骨修复的动物模型。

Animal models for cartilage repair.

机构信息

IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.

Department of Health, Animal Science and Food Safety, University of Milan, Italy.

出版信息

J Biol Regul Homeost Agents. 2018 Nov-Dec;32(6 Suppl. 1):105-116.

Abstract

Cartilage lesions still represent an unsolved problem: despite the efforts of the basic and translational research, the regeneration of this tissue is far from being reached (1-3). Articular cartilage lesions can be divided in two main groups: superficial or partial defects and full-thickness defects (4, 5). Partial lesions are not able to self-heal because multipotent cells from the bone marrow cannot reach the area leading to a progressive degeneration of the tissue (6). Conversely, full-thickness injuries possess greater chances to heal because subchondral bone involvement allows for the migration of mesenchymal cells, which fill the damaged area (7, 8). However, healing occurs through the formation of a fibrocartilaginous tissue, which has different biomechanical and biological properties (9). Native hyaline cartilage has indeed specific biomechanical properties, which confer resistance to compressive and shear stresses; the reparative fibrocartilaginous tissue lacks these abilities, therefore, the surrounding healthy cartilage progressively degenerates. In the past years, several therapeutic strategies have been developed to restore the damaged cartilage, bone marrow stimulation (chondroabrasion, drilling, micro- or nano-fractures) and more recently, tissue engineering approaches (10-14). Some of these latter procedures have already been applied in clinical practice such as matrix-induced autologous chondrocyte implantation (MACI) (15) or osteochondral scaffold implantation (16). Generally, tissue engineering approaches are based on the combination of three main elements: cells (i.e. primary chondrocytes or multipotent mesenchymal cells), biocompatible scaffolds (i.e. polymers, composites, ceramics) and signaling molecules (i.e. growth factors). Moreover, several culture conditions (i.e. static or dynamic cultures) and biomechanical stimuli can be applied during the culture to promote tissue maturation (17-19). However, an culture is mandatory to validate a new engineered construct as the phase lacks the essential environmental stimuli and because the culture allows for the testing of the biocompatibility and safety of a new material (18, 19). Moreover, preclinical animal models are crucial to understand the molecular mechanisms of cartilage lesions favoring the development of new regenerative strategies (20, 21). studies on animal models should focus on the analysis of the cellular component, analyzing the maintenance of the cellular phenotype and the tumorigenicity; on the evaluation of the biocompatibility, toxicity and degradation of the biomaterial and on the assessment of the engineered construct. In this manuscript, we will review the most common preclinical animal models, which are used to understand cartilage biology and therefore to develop new tissue engineering strategies. We will focus on both small and large animal models highlighting their peculiarities, advantages and drawbacks.

摘要

软骨病变仍然是一个未解决的问题

尽管基础和转化研究付出了努力,但这种组织的再生还远远没有实现(1-3)。关节软骨病变可分为两组:浅表或部分缺损和全层缺损(4、5)。部分病变无法自我修复,因为骨髓中的多能细胞无法到达病变区域,导致组织逐渐退化(6)。相反,全层损伤有更大的愈合机会,因为软骨下骨的参与允许间充质细胞迁移,从而填充受损区域(7、8)。然而,愈合是通过形成纤维软骨组织来实现的,纤维软骨组织具有不同的生物力学和生物学特性(9)。天然透明软骨具有特定的生物力学特性,使其能够抵抗压缩和剪切应力;修复性纤维软骨组织缺乏这些能力,因此周围健康的软骨会逐渐退化。在过去的几年中,已经开发了几种治疗策略来修复受损的软骨,包括骨髓刺激(软骨刨削、钻孔、微骨折或纳米骨折),以及最近的组织工程方法(10-14)。其中一些方法已经在临床实践中应用,例如基质诱导的自体软骨细胞植入(MACI)(15)或骨软骨支架植入(16)。一般来说,组织工程方法基于三个主要元素的结合:细胞(即原代软骨细胞或多能间充质细胞)、生物相容性支架(即聚合物、复合材料、陶瓷)和信号分子(即生长因子)。此外,在培养过程中可以施加几种培养条件(即静态或动态培养)和生物力学刺激,以促进组织成熟(17-19)。然而,体外培养是验证新工程构建体的必要条件,因为体外培养缺乏必要的环境刺激,并且体外培养可以测试新材料的生物相容性和安全性(18、19)。此外,临床前动物模型对于理解软骨病变的分子机制至关重要,这有助于开发新的再生策略(20、21)。动物模型的研究应侧重于分析细胞成分,分析细胞表型的维持和致瘤性;评估生物材料的生物相容性、毒性和降解以及评估工程构建体。在本文中,我们将回顾最常见的临床前动物模型,这些模型用于了解软骨生物学,从而开发新的组织工程策略。我们将重点介绍小型和大型动物模型,突出它们的特点、优点和缺点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验