The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK.
Physics and Astronomy Department, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK.
Nat Commun. 2019 Jan 15;10(1):226. doi: 10.1038/s41467-018-08132-7.
Conventional nanophotonic schemes minimise multiple scattering to realise a miniaturised version of beam-splitters, interferometers and optical cavities for light propagation and lasing. Here instead, we introduce a nanophotonic network built from multiple paths and interference, to control and enhance light-matter interaction via light localisation. The network is built from a mesh of subwavelength waveguides, and can sustain localised modes and mirror-less light trapping stemming from interference over hundreds of nodes. With optical gain, these modes can easily lase, reaching ~100 pm linewidths. We introduce a graph solution to the Maxwell's equation which describes light on the network, and predicts lasing action. In this framework, the network optical modes can be designed via the network connectivity and topology, and lasing can be tailored and enhanced by the network shape. Nanophotonic networks pave the way for new laser device architectures, which can be used for sensitive biosensing and on-chip optical information processing.
传统的纳米光子学方案通过最小化多次散射来实现光束分光器、干涉仪和光学腔的小型化,以实现光的传播和激光。在这里,我们引入了一个由多个路径和干涉构成的纳米光子网络,通过光局域化来控制和增强光与物质的相互作用。该网络由亚波长波导的网格构成,可以维持局部模式和无镜光捕获,这源于数百个节点的干涉。有了光增益,这些模式可以很容易地激光,达到~100pm 的线宽。我们引入了一种图论解来描述网络上的光的麦克斯韦方程,并预测激光作用。在这个框架中,网络的光学模式可以通过网络的连通性和拓扑结构来设计,并且可以通过网络形状来调整和增强激光作用。纳米光子网络为新的激光器件架构铺平了道路,这些架构可用于敏感的生物传感和片上光信息处理。