Opt Lett. 2019 Jan 15;44(2):247-250. doi: 10.1364/OL.44.000247.
Thermal noise in dielectric mirror-coatings is the limiting factor for ultra-high-precision metrologies employing optical cavities and being operated at cryogenic temperatures. Silica film is an indispensable low-refractive-index material for mirror coatings but suffers from high cryogenic mechanical loss and hence contributes to high thermal noise. We partitioned a thick silica film into thin layers by introducing blocking layers of titania. The cryogenic mechanical loss of silica was significantly suppressed; the effect was more profound for thinner partitions. Elimination of the transitions of the long-range two-level systems with scales that exceed the thickness of the silica partition is hypothesized. Dielectric mirror coatings with blocking layers are proposed to reduce the cryogenic thermal noise of the coatings. The calculated reflectance spectrum is consistent with that of the conventional quarter-wave (QW) stack around 1550 nm, and the calculated absorptance increases 2.2 times over that of a conventional titania/silica QW stack where the titania is absorptive.
介质反射镜涂层中的热噪声是采用光学腔并在低温下运行的超高精度计量学的限制因素。二氧化硅薄膜是反射镜涂层不可或缺的低折射率材料,但它的低温机械损耗很高,因此会导致较高的热噪声。我们通过引入二氧化钛阻挡层将厚的二氧化硅薄膜分成薄层。这显著抑制了二氧化硅的低温机械损耗;对于更薄的隔板,效果更为明显。假设消除了长程两能级系统的跃迁,其尺度超过了二氧化硅隔板的厚度。提出了带有阻挡层的介质反射镜涂层,以降低涂层的低温热噪声。计算得到的反射率谱在 1550nm 左右与传统的四分之一波(QW)堆叠一致,并且与传统的二氧化钛/二氧化硅 QW 堆叠相比,吸收率增加了 2.2 倍,其中二氧化钛是吸收性的。