Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
Nanoscale. 2019 Mar 21;11(12):5222-5230. doi: 10.1039/c8nr09101c.
Solution phase printing of nanomaterials is becoming increasingly important for the creation of scalable flexible electronics including those associated with biomedical and energy harvesting applications. However, the use of solution-phase printed thermoelectric energy generators (TEGs) has been minimally explored. Herein we report a highly flexible inkjet-printed TEG. Bismuth telluride (Bi2Te3) and bismuth antimony telluride (Bi0.5Sb1.5Te3) nanowires (NWs) are inkjet printed onto polyimide to form n-type and p-type legs for the TEGs. A post-print thermal annealing process is used to increase the thermoelectric performance of the printed NWs while eutectic gallium-indium (EGaIn) liquid metal contacts electrically connect the TEG legs in series. Annealing conditions for the combination of p/n legs are examined to maximize the thermoelectric efficiency of the TEG prototype. The maximum power factor was found to be 180 μW m-1 K-2 and 110 μW m-1 K-2 for the Bi2Te3 and Bi0.5Sb1.5Te3 nanowires respectively. A maximum power for the fully printed TEG device measured 127 nW at a 32.5 K temperature difference. The performance of the TEG device does not diminish even after multiple bending experiments (up to 50 times) around a tight radius of curvature (rod-dia. 11 mm). Hence this inkjet-printed flexible TEG is a step towards a fully functional wearable TEG device.
溶液相打印技术在创造可扩展的柔性电子产品方面变得越来越重要,包括与生物医学和能量收集应用相关的电子产品。然而,溶液相打印的热电能量发生器(TEG)的应用却鲜有探索。在此,我们报告了一种高度灵活的喷墨打印 TEG。碲化铋(Bi2Te3)和碲化铋锑(Bi0.5Sb1.5Te3)纳米线(NWs)被喷墨打印到聚酰亚胺上,为 TEG 形成 n 型和 p 型腿。采用后印刷热退火工艺来提高印刷 NW 的热电性能,同时共晶镓铟(EGaIn)液态金属接触将 TEG 腿串联电连接。研究了 p/n 腿组合的退火条件,以最大化 TEG 原型的热电效率。发现 Bi2Te3 和 Bi0.5Sb1.5Te3 纳米线的最大功率因数分别为 180 μW m-1 K-2 和 110 μW m-1 K-2。在 32.5 K 的温差下,全印刷 TEG 器件的最大功率为 127 nW。即使在围绕小曲率半径(棒直径 11 毫米)进行多次弯曲实验(多达 50 次)后,TEG 器件的性能也不会下降。因此,这种喷墨打印的柔性 TEG 是迈向全功能可穿戴 TEG 器件的一步。