Suppr超能文献

基于卷积神经网络的轨道角动量光束失准模式检测

Mode detection of misaligned orbital angular momentum beams based on convolutional neural network.

作者信息

Zhao Qingsong, Hao Shiqi, Wang Yong, Wang Lei, Wan Xiongfeng, Xu Chenlu

出版信息

Appl Opt. 2018 Dec 10;57(35):10152-10158. doi: 10.1364/AO.57.010152.

Abstract

The utilization of beam-carrying orbital angular momentum (OAM) for free-space optical (FSO) communication can increase channel capacity. However, the misalignment of the beam is an effect that must be mitigated in FSO communication systems. Due to the robustness of deep learning technology in pattern recognition, a neural network structure is proposed and improved to mitigate the effect of misalignment error. First, compared with the simple convolutional neural network proposed, data augmentation is adopted in the training. Then, a view-pooling layer is added after the convolutional layer. This layer can longitudinally compress feature maps from multiple receiving angles. In order to verify the performance of the proposed method, related experiments are reported in this paper. It can be seen from the results that when the tilt angle is less than 35°, the accuracy of OAM mode detection is above 99%, 93%, and 88%, respectively, corresponding to the condition of weak (Cn2=1×10  m), medium (Cn2=1×10  m) and strong (Cn2=1×10  m) turbulence.

摘要

利用携带光束的轨道角动量(OAM)进行自由空间光(FSO)通信可以增加信道容量。然而,光束的对准误差是自由空间光通信系统中必须减轻的一种影响。由于深度学习技术在模式识别方面的鲁棒性,提出并改进了一种神经网络结构,以减轻对准误差的影响。首先,与所提出的简单卷积神经网络相比,在训练中采用了数据增强。然后,在卷积层之后添加一个视图池化层。该层可以纵向压缩来自多个接收角度的特征图。为了验证所提方法的性能,本文报道了相关实验。从结果可以看出,当倾斜角度小于35°时,OAM模式检测的准确率分别在弱湍流(Cn2 = 1×10 m)、中等湍流(Cn2 = 1×10 m)和强湍流(Cn2 = 1×10 m)条件下高于99%、93%和88%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验