Suppr超能文献

偏振介质的相干和微分穆勒矩阵。

Coherency and differential Mueller matrices for polarizing media.

作者信息

Sheppard Colin J R, Bendandi Artemi, Le Gratiet Aymeric, Diaspro Alberto

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2018 Dec 1;35(12):2058-2069. doi: 10.1364/JOSAA.35.002058.

Abstract

The elements of the coherency matrix give the strength of the components of a Mueller matrix in the coherency basis. The Z-matrix (called the polarization-coupling matrix or state-generating matrix) represents a partial sum of the coherency expansion. For transmission through a deterministic medium, the coherency elements can be used directly as generators to calculate the development of polarization upon propagation. The commutation properties of the coherency elements are investigated. New matrices that we call the W-matrix and the X-matrix, both different representations of the Z-matrix in a Jones basis, are introduced. The W-matrix controls the transformation of the Jones vector and also the covariance matrix. The product of the X-matrix with its complex conjugate gives the matrix representation of the Mueller matrix in the Jones basis. The development of Mueller matrix and coherency matrix elements upon propagation through some examples of a uniform medium is investigated. It is shown that the coherency matrix is more easily interpreted than the Mueller matrix. Analytic expressions are presented to calculate the elementary polarization properties from coherency matrix elements or Mueller matrix parameters.

摘要

相干矩阵的元素给出了在相干基下穆勒矩阵各分量的强度。Z矩阵(称为偏振耦合矩阵或状态生成矩阵)表示相干展开的部分和。对于通过确定性介质的传输,相干元素可直接用作生成器,以计算传播过程中偏振的演变。研究了相干元素的对易性质。引入了我们称为W矩阵和X矩阵的新矩阵,它们都是Z矩阵在琼斯基下的不同表示形式。W矩阵控制琼斯矢量以及协方差矩阵的变换。X矩阵与其复共轭的乘积给出了琼斯基下穆勒矩阵的矩阵表示。通过均匀介质的一些示例研究了传播过程中穆勒矩阵和相干矩阵元素的演变。结果表明,相干矩阵比穆勒矩阵更容易解释。给出了从相干矩阵元素或穆勒矩阵参数计算基本偏振特性的解析表达式。

相似文献

1
Coherency and differential Mueller matrices for polarizing media.偏振介质的相干和微分穆勒矩阵。
J Opt Soc Am A Opt Image Sci Vis. 2018 Dec 1;35(12):2058-2069. doi: 10.1364/JOSAA.35.002058.
2
Polarization in reflectance imaging.反射成像中的偏振
J Opt Soc Am A Opt Image Sci Vis. 2020 Mar 1;37(3):491-500. doi: 10.1364/JOSAA.379327.
3
Factorization of the coherency matrix of polarization optics.偏振光学相干矩阵的因式分解。
J Opt Soc Am A Opt Image Sci Vis. 2018 Apr 1;35(4):586-590. doi: 10.1364/JOSAA.35.000586.
4
Polarization coherency matrix tomography.偏振相干矩阵层析成像。
J Biophotonics. 2023 Sep;16(9):e202300093. doi: 10.1002/jbio.202300093. Epub 2023 Jun 14.
6
Eigenvectors of polarization coherency matrices.极化相干矩阵的特征向量。
J Opt Soc Am A Opt Image Sci Vis. 2020 Jul 1;37(7):1143-1154. doi: 10.1364/JOSAA.391902.
10
Spatial propagation of coherency matrix in polarization optics.极化光学中相干矩阵的空间传播。
J Opt Soc Am A Opt Image Sci Vis. 2012 Jul 1;29(7):1247-51. doi: 10.1364/JOSAA.29.001247.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验