Opt Lett. 2019 Jan 1;44(1):139-142. doi: 10.1364/OL.44.000139.
Quantum digital signature (QDS) can guarantee message integrity and non-repudiation with information-theoretical security, and it has attracted more attention recently. Since proposed by Andersson et al. [Phys. Rev. A93, 032325 (2016)PLRAAN1050-294710.1103/PhysRevA.93.032325], a quantum digital signature protocol using an insecure channel has been realized with several different quantum key distribution (QKD) systems. Here we report an experimental QDS based on a BB84 QKD system. An asymmetric Faraday-Sagnac-Michelson interferometer structure has been designed in our system, which is intrinsically stable against channel disturbance. The innovatory structure supports the system to work at high speed and, in practice, the repetition rate is in gigahertz. A 0.044 bit/s signature rate has been attained with a 25 dB channel loss composed of a 25 km installed fiber with additional optical attenuation in a 10 security level. Thus, our QDS device is stable and highly efficient. This Letter provides a further step for the practical application of QDS.
量子数字签名(QDS)可以保证信息理论安全性的消息完整性和不可抵赖性,最近它引起了更多的关注。自从 Andersson 等人提出以来[Phys. Rev. A93, 032325 (2016)PLRAAN1050-294710.1103/PhysRevA.93.032325],已经使用几种不同的量子密钥分发(QKD)系统实现了使用不安全信道的量子数字签名协议。在这里,我们报告了一个基于 BB84 QKD 系统的实验 QDS。我们的系统设计了一个不对称的法拉第-萨格纳克-迈克尔逊干涉仪结构,该结构对信道干扰具有内在的稳定性。创新的结构支持系统以高速工作,实际上,重复率为千兆赫。在由 25km 安装光纤组成并在 10 个安全级别中增加了额外的光衰减的 25dB 信道损耗下,实现了 0.044 位/秒的签名速率。因此,我们的 QDS 设备稳定且高效。这封信为 QDS 的实际应用提供了进一步的步骤。