Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
Analyst. 2019 Feb 25;144(5):1660-1670. doi: 10.1039/c8an02150c.
Ion mobility-based separation prior to mass spectrometry has become an invaluable tool in the structural elucidation of gas-phase ions and in the characterization of complex mixtures. Application of ion mobility to structural studies requires an accurate methodology to bridge theoretical modelling of chemical structure with experimental determination of an ion's collision cross section (CCS). Herein, we present a refined methodology for calculating ion CCS using parallel computing architectures that makes use of atom specific parameters, which we have called MobCal-MPI. Tuning of ion-nitrogen van der Waals potentials on a diverse calibration set of 162 molecules returned a RMSE of 2.60% in CCS calculations of molecules containing the elements C, H, O, N, F, P, S, Cl, Br, and I. External validation of the ion-nitrogen potential was performed on an additional 50 compounds not present in the validation set, returning a RMSE of 2.31% for the CCSs of these compounds. Owing to the use of parameters from the MMFF94 forcefield, the calibration of the van der Waals potential can be extended to additional atoms defined in the MMFF94 forcefield (i.e., Li, Na, K, Si, Mg, Ca, Fe, Cu, Zn). We expect that the work presented here will serve as a foundation for facile determination of molecular CCSs, as MobCal-MPI boasts up to 64-fold speedups over traditional calculation packages.
基于离子淌度的分离技术在气相离子结构解析和复杂混合物的表征方面已经成为一种非常有价值的工具。将离子淌度应用于结构研究需要一种精确的方法,将化学结构的理论建模与离子碰撞截面(CCS)的实验测定联系起来。在此,我们提出了一种使用并行计算架构计算离子 CCS 的改进方法,该方法利用了原子特定参数,我们称之为 MobCal-MPI。对包含 C、H、O、N、F、P、S、Cl、Br 和 I 元素的 162 种分子的校准集进行离子-氮范德华势的调谐,得到了 2.60%的分子 CCS 计算均方根误差(RMSE)。对不在验证集中的另外 50 种化合物进行离子-氮势的外部验证,得到这些化合物 CCS 的 RMSE 为 2.31%。由于使用了 MMFF94 力场中的参数,范德华势的校准可以扩展到 MMFF94 力场中定义的其他原子(即 Li、Na、K、Si、Mg、Ca、Fe、Cu、Zn)。我们预计,这里提出的工作将为方便地确定分子 CCS 奠定基础,因为 MobCal-MPI 的速度比传统计算包快 64 倍。