Bučinskas Juozas, Pomarnacki Raimondas, Plonis Darius, Paulikas Šarūnas, Tušinskis Giedrius, Nickelson Liudmila
Chemical Physics Institute, Vilnius University, Sauletekio str. 9, 10222 Vilnius, Lithuania.
Department of Electronic Systems, Vilnius Gediminas Technical University, Naugarduko str. 41, 03227 Vilnius, Lithuania.
Materials (Basel). 2019 Jan 15;12(2):265. doi: 10.3390/ma12020265.
Here is presented our numerical investigations based on the rigorous solution of the Maxwell's equations for analyses of absorbed and scattered powers of a semiconductor-metamaterial array with a window defect. The array structure consists of a finite set of infinite parallel, circular cylinders that can be made of the different lossy and/or lossless isotropic materials. We used our developed computer code, which allowed us to consider an array consisting of an arbitrary number of cylinders. According to our code, cylinders can be located at different distances and have differing diameters. There is a limitation: Cylinders should not cross each other. We numerically examined two cylindrical arrays with electromagnetic (EM) band-gap (EBG) defects. The absorbed and scattered powers were analyzed there for parallel and perpendicular polarizations of the incident microwave. We investigated dependencies on the operating frequency and the radius (R) of an arc of the arranged thirteen n-Si cylinders with the low semiconductor specific resistivity of 0.5, 2, and 10 Ω∙m. We have discovered that the arrays may have features of a waveguide or a microwave reflector.
本文展示了我们基于麦克斯韦方程组的精确解进行的数值研究,用于分析具有窗口缺陷的半导体 - 超材料阵列的吸收功率和散射功率。该阵列结构由一组有限的无限平行圆柱组成,这些圆柱可以由不同的有耗和/或无耗各向同性材料制成。我们使用了自己开发的计算机代码,这使我们能够考虑由任意数量圆柱组成的阵列。根据我们的代码,圆柱可以位于不同距离处且具有不同直径。存在一个限制:圆柱不应相互交叉。我们对具有电磁(EM)带隙(EBG)缺陷的两个圆柱阵列进行了数值研究。在那里分析了入射微波平行和垂直极化时的吸收功率和散射功率。我们研究了具有低半导体比电阻率分别为0.5、2和10Ω∙m的排列的13个n型硅圆柱的弧的工作频率和半径(R)的相关性。我们发现这些阵列可能具有波导或微波反射器的特性。