Dai Jun, Goudail François, Boffety Matthieu, Gao Jun
Opt Express. 2018 Dec 24;26(26):34081-34093. doi: 10.1364/OE.26.034081.
The final product of polarimetric measurements is often such polarimetric parameters as degree of polarization (DOP), angle of polarization (AOP) and ellipticity (EOP). Since these parameters are nonlinear functions of the Stokes vector, it is difficult to derive closed-form expressions of their variances. We derive approximate but accurate expressions of the estimation variances of DOP, AOP, and EOP in the presence of both additive and Poisson noise for optimal spherical design-based Stokes polarimeters. These original closed-from expressions provide a clear insight into the physical parameters that govern the estimation precision of each polarimetric parameter. They are validated through optical experiments on a real-world polarimeter. These expressions are important for designing and sizing polarimeters or polarimetric imagers aimed at different types of applications, and for assessing their performance.
偏振测量的最终结果通常是诸如偏振度(DOP)、偏振角(AOP)和椭圆率(EOP)等偏振参数。由于这些参数是斯托克斯矢量的非线性函数,因此很难推导它们方差的闭式表达式。我们针对基于最优球面设计的斯托克斯偏振计,推导了在存在加性噪声和泊松噪声情况下DOP、AOP和EOP估计方差的近似但精确的表达式。这些原始的闭式表达式能清晰洞察控制每个偏振参数估计精度的物理参数。它们通过在实际偏振计上进行的光学实验得到验证。这些表达式对于设计和确定针对不同类型应用的偏振计或偏振成像仪的尺寸,以及评估其性能都很重要。