Goudail François
Opt Lett. 2017 Jun 1;42(11):2153-2156. doi: 10.1364/OL.42.002153.
We investigate the optimal strategies for estimating the Mueller matrix with arbitrary numbers of illumination and analysis states, in the presence of signal-independent additive noise or signal-dependent Poisson shot noise. We demonstrate that the architectures that minimize and equalize the estimation variances for both types of noise sources are based on spherical designs of order 2 or 3, and we provide closed-form expressions of the estimation precision obtained with these optimal measurement strategies. The obtained results are important to design Mueller polarimeters in practice and assess their fundamental limits in terms of estimation precision.
我们研究了在存在与信号无关的加性噪声或与信号相关的泊松散粒噪声的情况下,使用任意数量的照明和分析状态来估计穆勒矩阵的最优策略。我们证明,使两种类型噪声源的估计方差最小化并使其相等的架构基于二阶或三阶球面设计,并且我们给出了通过这些最优测量策略获得的估计精度的闭式表达式。所得结果对于实际设计穆勒偏振仪以及评估其在估计精度方面的基本极限具有重要意义。