1Science for Life Laboratory, Medical Cell Biology, Uppsala University, Uppsala University, Box 571, 751 21 Uppsala, Sweden.
2Department of Information Technology, Uppsala University, Box 331, 751 05 Uppsala, Sweden.
Commun Biol. 2019 Jan 8;2:12. doi: 10.1038/s42003-018-0240-2. eCollection 2019.
Cells are neither flat nor smooth, which has serious implications for prevailing plasma membrane models and cellular processes like cell signalling, adhesion and molecular clustering. Using probability distributions from diffusion simulations, we demonstrate that 2D and 3D Euclidean distance measurements substantially underestimate diffusion on non-flat surfaces. Intuitively, the shortest within surface distance (SWSD), the geodesic distance, should reduce this problem. The SWSD is accurate for foldable surfaces but, although it outperforms 2D and 3D Euclidean measurements, it still underestimates movement on deformed surfaces. We demonstrate that the reason behind the underestimation is that topographical features themselves can produce both super- and subdiffusion, i.e. the appearance of anomalous diffusion. Differentiating between topography-induced and genuine anomalous diffusion requires characterising the surface by simulating Brownian motion on high-resolution cell surface images and a comparison with the experimental data.
细胞既不是平的也不是光滑的,这对流行的质膜模型和细胞信号转导、黏附和分子聚类等细胞过程有严重影响。我们使用扩散模拟的概率分布,证明二维和三维欧几里得距离测量大大低估了非平面表面上的扩散。直观地说,最短的表面内距离(SWSD),即测地线距离,应该可以减少这个问题。SWSD 对于可折叠表面是准确的,但尽管它优于二维和三维欧几里得测量,但它仍然低估了变形表面上的运动。我们证明,低估的原因是地形特征本身可以产生超扩散和亚扩散,即异常扩散的出现。区分地形引起的和真正的异常扩散需要通过在高分辨率细胞表面图像上模拟布朗运动并与实验数据进行比较来对表面进行特征化。