Suppr超能文献

双-2-氧代吲哚啉琥珀酰肼的计算研究及其体外细胞毒性

Computational Studies of bis-2-Oxoindoline Succinohydrazides and their In Vitro Cytotoxicity.

作者信息

Jarapula Ravi, Badavath Vishnu N, Rekulapally Shriram, Manda Sarangapani

机构信息

Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Kakatiya University, Warangal-506009, Telangana, India.

Department of Chemistry, Indian Institute of Technology, (IIT-BHU), Varanasi- 221005, Uttar Pradesh, India.

出版信息

Curr Comput Aided Drug Des. 2020;16(3):270-280. doi: 10.2174/1573409915666190117122139.

Abstract

BACKGROUND

The discovery of clinically relevant EGFR inhibitors for cancer therapy has proven to be a challenging task. To identify novel and potent EGFR inhibitors, the quantitative structure-activity relationship (QSAR) and molecular docking approach became a very useful and largely widespread technique for drug design.

METHODS

We performed the in vitro cytotoxic activity on HEPG-2 cell line and earlier on MCF-7 and A 549 by using MTT assay method. The development of 3D QSAR model of N1,N4-bis(2-oxoindolin-3- ylidene) succinohydrazides using the stepwise-backward variable methods to generate Multiple Linear Regression method elucidates the structural properties required for EGFR inhibitory activity and also perform the Molecular Docking studies on EGFR (PDB ID:1M17). Further, we analysed for Lipinski's rule of five to evaluate the drug-likeness and established in silico ADMET properties.

RESULTS

The resulting cytotoxicity (IC50) values ranged from 9.34 to 100 μM and compared with cisplatin as a standard. Among the series of compounds, 6j showed good cytotoxic activity on HEPG-2 cell line with 9.34 μM, IC50 value. Most of the evaluated compounds showed good antitumor activity on HEPG-2 than MCF-7and A549. The developed 3D QSAR Multiple Linear Regression models are statistically significant with non-cross-validated correlation coefficient r2 = 0.9977, cross-validated correlation coefficient q2 = 0.902 and predicted_r2 = 0.9205. Molecular docking studies on EGFR (PDB ID: 1M17) results, compounds 6d, 6j and 6l showed good dock/PLP scores i.e. -81.28, -73.98 and -75.37, respectively, by interacting with Leu-694, Val-702 and Gly-772 amino acids via hydrophobic and hydrogen bonds with Asn818 and Met- 769. Further, we analysed drug-likeness and established in silico ADMET properties.

CONCLUSION

The results of 3D QSAR studies suggest that the electrostatic and steric descriptors influence the cytotoxic activity of succinohydrazides. From the molecular docking studies, it is evident that hydrophobic, hydrogen and Van Der Waal's interactions determine binding affinities. In addition to this, druglikeness and ADMET properties were analysed. It is evident that there is a correlation between the QSAR and docking results. Compound 6j was found to be too lipophilic due to its dihalo substitution on isatin nucleus, and can act as a lead molecule for further and useful future development of new EGFR Inhibitors.

摘要

背景

事实证明,发现用于癌症治疗的具有临床相关性的表皮生长因子受体(EGFR)抑制剂是一项具有挑战性的任务。为了鉴定新型强效EGFR抑制剂,定量构效关系(QSAR)和分子对接方法成为药物设计中非常有用且广泛应用的技术。

方法

我们通过MTT测定法对人肝癌细胞系(HEPG-2)以及之前对人乳腺癌细胞系(MCF-7)和人肺癌细胞系(A549)进行了体外细胞毒性活性检测。使用逐步向后变量法建立N1,N4-双(2-氧代吲哚啉-3-亚基)琥珀酰肼的三维定量构效关系(3D QSAR)模型,以生成多元线性回归方法,阐明EGFR抑制活性所需的结构特性,并对EGFR(蛋白质数据银行ID:1M17)进行分子对接研究。此外,我们依据Lipinski五规则分析评估药物相似性,并确定了计算机辅助的药物代谢及药物动力学性质(ADMET)。

结果

所得细胞毒性(IC50)值范围为9.34至100μM,并以顺铂作为标准进行比较。在该系列化合物中,6j对HEPG-2细胞系显示出良好的细胞毒性活性,IC50值为9.34μM。大多数评估化合物对HEPG-2的抗肿瘤活性优于MCF-7和A549。所建立的三维定量构效关系多元线性回归模型具有统计学意义,非交叉验证相关系数r2 = 0.9977,交叉验证相关系数q2 = 0.902,预测相关系数predicted_r2 = 0.9205。对EGFR(蛋白质数据银行ID:1M17)的分子对接研究结果表明,化合物6d、6j和6l通过与亮氨酸-694、缬氨酸-702和甘氨酸-772氨基酸相互作用,经由与天冬酰胺818和蛋氨酸-769形成疏水键和氢键,分别显示出良好的对接/磷酸结合口袋(PLP)评分,即-81.28、-73.98和-75.37。此外,我们分析了药物相似性并确定了计算机辅助的药物代谢及药物动力学性质。

结论

三维定量构效关系研究结果表明,静电和空间描述符会影响琥珀酰肼的细胞毒性活性。从分子对接研究中可以明显看出,疏水、氢键和范德华相互作用决定了结合亲和力。除此之外,还分析了药物相似性和药物代谢及药物动力学性质。显然,定量构效关系和对接结果之间存在相关性。由于其在异吲哚酮核上的二卤代取代,化合物6j被发现具有过高的亲脂性,并且可以作为进一步研发新型EGFR抑制剂的先导分子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验