UCL Great Ormond Street Institute of Child Health, and NIHR Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London, London, United Kingdom.
NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, and UCL Institute of Ophthalmology, London, United Kingdom.
Ophthalmology. 2019 Jun;126(6):888-907. doi: 10.1016/j.ophtha.2018.12.050. Epub 2019 Jan 14.
To develop a comprehensive next-generation sequencing panel assay that screens genes known to cause developmental eye disorders and inherited eye disease and to evaluate its diagnostic yield in a pediatric cohort with malformations of the globe, anterior segment anomalies, childhood glaucoma, or a combination thereof.
Evaluation of diagnostic test.
Two hundred seventy-seven children, 0 to 16 years of age, diagnosed with nonsyndromic or syndromic developmental eye defects without a genetic diagnosis.
We developed a new oculome panel using a custom-designed Agilent SureSelect QXT target capture method (Agilent Technologies, Santa Clara, CA) to capture and perform parallel high-throughput sequencing analysis of 429 genes associated with eye disorders. Bidirectional Sanger sequencing confirmed suspected pathogenic variants.
Collated clinical details and oculome molecular genetic results.
The oculome design covers 429 known eye disease genes; these are subdivided into 5 overlapping virtual subpanels for anterior segment developmental anomalies including glaucoma (ASDA; 59 genes), microphthalmia-anophthalmia-coloboma (MAC; 86 genes), congenital cataracts and lens-associated conditions (70 genes), retinal dystrophies (RET; 235 genes), and albinism (15 genes), as well as additional genes implicated in optic atrophy and complex strabismus (10 genes). Panel development and testing included analyzing 277 clinical samples and 3 positive control samples using Illumina sequencing platforms; more than 30× read depth was achieved for 99.5% of the targeted 1.77-Mb region. Bioinformatics analysis performed using a pipeline based on Freebayes and ExomeDepth to identify coding sequence and copy number variants, respectively, resulted in a definitive diagnosis in 68 of 277 samples, with variability in diagnostic yield between phenotypic subgroups: MAC, 8.2% (8 of 98 cases solved); ASDA, 24.8% (28 of 113 cases solved); other or syndromic, 37.5% (3 of 8 cases solved); RET, 42.8% (21 of 49 cases solved); and congenital cataracts and lens-associated conditions, 88.9% (8 of 9 cases solved).
The oculome test diagnoses a comprehensive range of genetic conditions affecting the development of the eye, potentially replacing protracted and costly multidisciplinary assessments and allowing for faster targeted management. The oculome enabled molecular diagnosis of a significant number of cases in our sample cohort of varied ocular birth defects.
开发一种全面的下一代测序panel 检测方法,用于筛查已知导致发育性眼部疾病和遗传性眼病的基因,并评估其在一组具有眼球畸形、前节异常、儿童青光眼或其组合的儿科患者中的诊断效果。
诊断测试评估。
277 名 0 至 16 岁的儿童,患有非综合征或综合征性发育性眼部缺陷,但未进行基因诊断。
我们使用定制设计的 Agilent SureSelect QXT 靶向捕获方法(加利福尼亚州圣克拉拉的 Agilent Technologies)开发了一种新的眼遗传病panel,用于捕获和并行进行与眼部疾病相关的 429 个基因的高通量测序分析。双向 Sanger 测序证实了疑似致病性变异。
收集的临床详细信息和眼遗传病分子遗传学结果。
眼遗传病panel 设计涵盖 429 个已知的眼部疾病基因;这些基因分为 5 个重叠的虚拟亚panel,用于前节发育异常包括青光眼(ASDA;59 个基因)、小眼球-无眼球-脉络膜裂(MAC;86 个基因)、先天性白内障和晶状体相关疾病(70 个基因)、视网膜营养不良(RET;235 个基因)和白化病(15 个基因),以及其他涉及视神经萎缩和复杂斜视的基因(10 个基因)。面板开发和测试包括使用 Illumina 测序平台分析 277 个临床样本和 3 个阳性对照样本;目标 1.77Mb 区域的 99.5%实现了超过 30×的读取深度。使用基于 Freebayes 和 ExomeDepth 的管道进行生物信息学分析,分别用于识别编码序列和拷贝数变异,导致 277 个样本中的 68 个样本有明确的诊断结果,表型亚组之间的诊断效果存在差异:MAC,8.2%(98 例中的 8 例解决);ASDA,24.8%(113 例中的 28 例解决);其他或综合征性,37.5%(8 例中的 3 例解决);RET,42.8%(49 例中的 21 例解决);先天性白内障和晶状体相关疾病,88.9%(9 例中的 8 例解决)。
眼遗传病panel 可诊断影响眼部发育的一系列遗传疾病,有可能取代冗长且昂贵的多学科评估,并实现更快的靶向治疗。眼遗传病panel 能够对我们的眼部先天缺陷样本队列中的大量病例进行分子诊断。