Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China.
Department of Infectious Diseases, Ningbo Yinzhou People's Hospital, Ningbo 315040, China.
Gene. 2019 Apr 15;692:119-125. doi: 10.1016/j.gene.2019.01.001. Epub 2019 Jan 14.
BACKGROUND: The current study aimed to identify potential diagnostic and prognostic gene biomarkers for colorectal cancer (CRC) based on the Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) dataset. METHODS: Microarray data of gene expression profiles of CRC from GEO and RNA-sequencing dataset of CRC from TCGA were downloaded. After screening overlapping differentially expressed genes (DEGs) by R software, functional enrichment analyses of the DEGs were performed using the DAVID database. Then, the STRING database and Cytoscape were used to construct a protein-protein interaction (PPI) network and identify hub genes. The receiver operating characteristic (ROC) curves were conducted to assess the diagnostic values of the hub genes. Cox proportional hazards regression was performed to screen the potential prognostic genes. Kaplan-Meier curve and the time-dependent ROC curve were used to assess the prognostic values of the potential prognostic genes for CRC patients. RESULTS: Integrated analysis of GEO and TCGA databases revealed 207 common DEGs in CRC. A PPI network consisted of 70 nodes and 170 edges were constructed and top 10 hub genes were identified. The area under curve (AUC) of the ROC curves of the hub genes were 0.900, 0.927, 0.869, 0.863, 0.980, 0.682, 0.903, 0.790, 0.995, and 0.989 for CCL19, CXCL1, CXCL5, CXCL11, CXCL12, GNG4, INSL5, NMU, PYY, and SST, respectively. A prognostic gene signature consisted of 9 genes including SLC4A4, NFE2L3, GLDN, PCOLCE2, TIMP1, CCL28, SCGB2A1, AXIN2, and MMP1 was constructed with a good performance in predicting overall survivals of CRC patients. The AUC of the time-dependent ROC curve was 0.741 for 5-year survival. CONCLUSION: The results in this study might provide some directive significance for further exploring the potential biomarkers for diagnosis and prognosis prediction of CRC patients.
背景:本研究旨在基于基因表达综合数据库(GEO)数据集和癌症基因组图谱(TCGA)数据集,鉴定结直肠癌(CRC)的潜在诊断和预后基因生物标志物。
方法:下载 GEO 中 CRC 的基因表达谱微阵列数据和 TCGA 中 CRC 的 RNA-seq 数据集。通过 R 软件筛选重叠差异表达基因(DEGs)后,使用 DAVID 数据库进行 DEGs 的功能富集分析。然后,使用 STRING 数据库和 Cytoscape 构建蛋白质-蛋白质相互作用(PPI)网络并识别枢纽基因。绘制受试者工作特征(ROC)曲线评估枢纽基因的诊断价值。采用 Cox 比例风险回归筛选潜在的预后基因。Kaplan-Meier 曲线和时间依赖性 ROC 曲线用于评估潜在的 CRC 预后基因的预后价值。
结果:整合 GEO 和 TCGA 数据库分析显示 CRC 中有 207 个共同的 DEGs。构建了一个包含 70 个节点和 170 条边的 PPI 网络,并确定了前 10 个枢纽基因。枢纽基因的 ROC 曲线下面积(AUC)分别为 0.900、0.927、0.869、0.863、0.980、0.682、0.903、0.790、0.995 和 0.989,对应 CCL19、CXCL1、CXCL5、CXCL11、CXCL12、GNG4、INSL5、NMU、PYY 和 SST。构建了一个包含 9 个基因的预后基因特征,包括 SLC4A4、NFE2L3、GLDN、PCOLCE2、TIMP1、CCL28、SCGB2A1、AXIN2 和 MMP1,该特征在预测 CRC 患者总生存率方面表现良好。5 年生存率的时间依赖性 ROC 曲线 AUC 为 0.741。
结论:本研究结果可能为进一步探索 CRC 患者诊断和预后预测的潜在生物标志物提供一些指导意义。
Math Biosci Eng. 2019-4-10
Int J Gen Med. 2025-6-10
Arch Med Sci. 2023-7-1
Bioimpacts. 2024-11-5
Methods Mol Biol. 2025