文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于整合生物信息学分析鉴定与结直肠癌患者诊断和预后相关的生物标志物。

Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.

机构信息

Department of Gastroenterology, Ningbo Yinzhou People's Hospital, Ningbo 315040, China.

Department of Infectious Diseases, Ningbo Yinzhou People's Hospital, Ningbo 315040, China.

出版信息

Gene. 2019 Apr 15;692:119-125. doi: 10.1016/j.gene.2019.01.001. Epub 2019 Jan 14.


DOI:10.1016/j.gene.2019.01.001
PMID:30654001
Abstract

BACKGROUND: The current study aimed to identify potential diagnostic and prognostic gene biomarkers for colorectal cancer (CRC) based on the Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) dataset. METHODS: Microarray data of gene expression profiles of CRC from GEO and RNA-sequencing dataset of CRC from TCGA were downloaded. After screening overlapping differentially expressed genes (DEGs) by R software, functional enrichment analyses of the DEGs were performed using the DAVID database. Then, the STRING database and Cytoscape were used to construct a protein-protein interaction (PPI) network and identify hub genes. The receiver operating characteristic (ROC) curves were conducted to assess the diagnostic values of the hub genes. Cox proportional hazards regression was performed to screen the potential prognostic genes. Kaplan-Meier curve and the time-dependent ROC curve were used to assess the prognostic values of the potential prognostic genes for CRC patients. RESULTS: Integrated analysis of GEO and TCGA databases revealed 207 common DEGs in CRC. A PPI network consisted of 70 nodes and 170 edges were constructed and top 10 hub genes were identified. The area under curve (AUC) of the ROC curves of the hub genes were 0.900, 0.927, 0.869, 0.863, 0.980, 0.682, 0.903, 0.790, 0.995, and 0.989 for CCL19, CXCL1, CXCL5, CXCL11, CXCL12, GNG4, INSL5, NMU, PYY, and SST, respectively. A prognostic gene signature consisted of 9 genes including SLC4A4, NFE2L3, GLDN, PCOLCE2, TIMP1, CCL28, SCGB2A1, AXIN2, and MMP1 was constructed with a good performance in predicting overall survivals of CRC patients. The AUC of the time-dependent ROC curve was 0.741 for 5-year survival. CONCLUSION: The results in this study might provide some directive significance for further exploring the potential biomarkers for diagnosis and prognosis prediction of CRC patients.

摘要

背景:本研究旨在基于基因表达综合数据库(GEO)数据集和癌症基因组图谱(TCGA)数据集,鉴定结直肠癌(CRC)的潜在诊断和预后基因生物标志物。

方法:下载 GEO 中 CRC 的基因表达谱微阵列数据和 TCGA 中 CRC 的 RNA-seq 数据集。通过 R 软件筛选重叠差异表达基因(DEGs)后,使用 DAVID 数据库进行 DEGs 的功能富集分析。然后,使用 STRING 数据库和 Cytoscape 构建蛋白质-蛋白质相互作用(PPI)网络并识别枢纽基因。绘制受试者工作特征(ROC)曲线评估枢纽基因的诊断价值。采用 Cox 比例风险回归筛选潜在的预后基因。Kaplan-Meier 曲线和时间依赖性 ROC 曲线用于评估潜在的 CRC 预后基因的预后价值。

结果:整合 GEO 和 TCGA 数据库分析显示 CRC 中有 207 个共同的 DEGs。构建了一个包含 70 个节点和 170 条边的 PPI 网络,并确定了前 10 个枢纽基因。枢纽基因的 ROC 曲线下面积(AUC)分别为 0.900、0.927、0.869、0.863、0.980、0.682、0.903、0.790、0.995 和 0.989,对应 CCL19、CXCL1、CXCL5、CXCL11、CXCL12、GNG4、INSL5、NMU、PYY 和 SST。构建了一个包含 9 个基因的预后基因特征,包括 SLC4A4、NFE2L3、GLDN、PCOLCE2、TIMP1、CCL28、SCGB2A1、AXIN2 和 MMP1,该特征在预测 CRC 患者总生存率方面表现良好。5 年生存率的时间依赖性 ROC 曲线 AUC 为 0.741。

结论:本研究结果可能为进一步探索 CRC 患者诊断和预后预测的潜在生物标志物提供一些指导意义。

相似文献

[1]
Identification of biomarkers associated with diagnosis and prognosis of colorectal cancer patients based on integrated bioinformatics analysis.

Gene. 2019-1-14

[2]
Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning.

Math Biosci Eng. 2021-10-19

[3]
Identification of biomarkers associated with diagnosis and prognosis of gastroesophageal junction adenocarcinoma-a study based on integrated bioinformatics analysis in GEO and TCGA database.

Medicine (Baltimore). 2020-12-18

[4]
Identification of Critical Genes and Five Prognostic Biomarkers Associated with Colorectal Cancer.

Med Sci Monit. 2018-7-5

[5]
Identification of key genes for predicting colorectal cancer prognosis by integrated bioinformatics analysis.

Oncol Lett. 2020-1

[6]
The identification of a common different gene expression signature in patients with colorectal cancer.

Math Biosci Eng. 2019-4-10

[7]
Identification of prognostic immune-related gene signature associated with tumor microenvironment of colorectal cancer.

BMC Cancer. 2021-8-8

[8]
Identification of Hub Genes Related to Carcinogenesis and Prognosis in Colorectal Cancer Based on Integrated Bioinformatics.

Mediators Inflamm. 2020

[9]
A network-based predictive gene expression signature for recurrence risks in stage II colorectal cancer.

Cancer Med. 2020-1

[10]
Identification of novel biomarkers and small molecule drugs in human colorectal cancer by microarray and bioinformatics analysis.

Mol Genet Genomic Med. 2019-5-13

引用本文的文献

[1]
Bioinformatics mining and experimental validation of prognostic biomarkers in colorectal cancer.

Discov Oncol. 2025-8-22

[2]
Developing a prognostic risk model based on circulating tumor cell genes to predict prognosis and provide potential therapeutic strategies in colorectal cancer.

Transl Cancer Res. 2025-5-30

[3]
Copper Metabolism-Related Genes as Biomarkers in Colon Adenoma and Cancer.

Int J Gen Med. 2025-6-10

[4]
Gene Swin transformer: new deep learning method for colorectal cancer prognosis using transcriptomic data.

Brief Bioinform. 2025-5-1

[5]
Investigation of potential prognostic biomarkers for colorectal cancer.

Arch Med Sci. 2023-7-1

[6]
Comprehensive bioinformatics analysis was used to identify and verify differentially expressed genes in targeted therapy of colon cancer.

Sci Rep. 2025-4-28

[7]
The diagnostic and prognostic value of in colorectal cancer.

Bioimpacts. 2024-11-5

[8]
Multiplexed Biomarker Detection Using DNA Payloads: Design, Assembly, and Analysis.

Methods Mol Biol. 2025

[9]
Ornithine decarboxylase antizyme 2 (OAZ2) in human colon adenocarcinoma: a potent prognostic factor associated with immunity.

Sci Rep. 2025-3-3

[10]
Hyaluronan-Mediated Motility Receptor (HMMR) Overexpression Is Correlated with Poor Survival in Patients with B-ALL.

Int J Mol Sci. 2025-1-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索