Suppr超能文献

结直肠癌潜在预后生物标志物的研究。

Investigation of potential prognostic biomarkers for colorectal cancer.

作者信息

Li Hui, Liu Jie, Liu WenHui, Zheng Liang, Chen JuHui

机构信息

Department of Abdominal Radiotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, China.

Department of Radiation Oncology, Mengchao Hepatobiliary Hospital of Fujian Medical University, China.

出版信息

Arch Med Sci. 2023 Jul 1;21(2):425-436. doi: 10.5114/aoms/167397. eCollection 2025.

Abstract

INTRODUCTION

Colorectal cancer (CRC) is the third leading cause of cancer-related death. Since CRC is largely asymptomatic until the alert features develop to an advanced stage, implementation of a screening program is important to reduce cancer morbidity and mortality. Current screening methods have significant limitations.

MATERIAL AND METHODS

CRC-related microarray datasets were collected from the GEO database and differentially expressed genes (DEGs) were identified. Next, Venn analysis, functional enrichment analysis, protein interaction network (PPI) analysis, and survival analysis were performed.

RESULTS

A total of 5267 and 4233 DEGs were identified in two datasets (GSE20916, GSE33133). The intersection of up-regulated genes in the two datasets was obtained by Venn Analysis as 1058 DEGs. Among the 1058 genes, 992 genes with survival and clinical information in TCGA were screened. Eleven DEGs were identified as potential prognostic markers. Model results show that the time period with the most obvious prognostic effect is 5 years, and the AUC value is the highest. ROC curve results are consistent with the model results of the survival analysis. The survival curve showed that LRRC8A, PCAT6, PLA2G15, SRD5A1, T1GD1 may be oncogenes, and DSN1, ERI1, EIT1, GLMN, MAPKAPK, NOP14 may be tumor suppressor genes.

CONCLUSIONS

This study discovers novel prognostic markers through Cox regression and survival analysis, and provides a theoretical basis for the treatment of CRC.

摘要

引言

结直肠癌(CRC)是癌症相关死亡的第三大主要原因。由于CRC在警报特征发展到晚期之前大多无症状,实施筛查计划对于降低癌症发病率和死亡率很重要。目前的筛查方法有显著局限性。

材料与方法

从GEO数据库收集CRC相关的微阵列数据集,并鉴定差异表达基因(DEG)。接下来,进行韦恩分析、功能富集分析、蛋白质相互作用网络(PPI)分析和生存分析。

结果

在两个数据集中(GSE20916、GSE33133)共鉴定出5267个和4233个DEG。通过韦恩分析获得两个数据集中上调基因的交集为1058个DEG。在这1058个基因中,筛选出992个在TCGA中有生存和临床信息的基因。鉴定出11个DEG作为潜在的预后标志物。模型结果表明,预后效果最明显的时间段为5年,AUC值最高。ROC曲线结果与生存分析的模型结果一致。生存曲线表明,LRRC8A、PCAT6、PLA2G15、SRD5A1、T1GD1可能是癌基因,而DSN1、ERI1、EIT1、GLMN、MAPKAPK、NOP14可能是肿瘤抑制基因。

结论

本研究通过Cox回归和生存分析发现了新的预后标志物,为CRC的治疗提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ff7/12087331/79ec10faca04/AMS-21-2-167397-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验