Suppr超能文献

高通量自动化检测 Medaka 胚胎的轴向畸形。

High throughput automated detection of axial malformations in Medaka embryo.

机构信息

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, 2 Boulevard Blaise Pascal, 93162, Noisy-le Grand, France; L'OREAL Research & Innovation, 1 avenue Eugène Schueller, 93600, Aulnay sous Bois, France.

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE, UPEM, 2 Boulevard Blaise Pascal, 93162, Noisy-le Grand, France; EPITA Research and Development Laboratory (LRDE), 14-16 rue Voltaire, 94270, Le Kremlin-Bicêtre, France.

出版信息

Comput Biol Med. 2019 Feb;105:157-168. doi: 10.1016/j.compbiomed.2018.12.016. Epub 2019 Jan 3.

Abstract

Fish embryo models are widely used as screening tools to assess the efficacy and/or toxicity of chemicals. This assessment involves the analysis of embryo morphological abnormalities. In this article, we propose a multi-scale pipeline to allow automated classification of fish embryos (Medaka: Oryzias latipes) based on the presence or absence of spine malformations. The proposed pipeline relies on the acquisition of fish embryo 2D images, on feature extraction based on mathematical morphology operators and on machine learning classification. After image acquisition, segmentation tools are used to detect the embryo before analysing several morphological features. An approach based on machine learning is then applied to these features to automatically classify embryos according to the presence of axial malformations. We built and validated our learning model on 1459 images with a 10-fold cross-validation by comparison with the gold standard of 3D observations performed under a microscope by a trained operator. Our pipeline results in correct classification in 85% of the cases included in the database. This percentage is similar to the percentage of success of a trained human operator working on 2D images. The key benefit of our approach is the low computational cost of our image analysis pipeline, which guarantees optimal throughput analysis.

摘要

鱼类胚胎模型被广泛用作筛选工具,以评估化学物质的功效和/或毒性。这种评估涉及胚胎形态异常的分析。在本文中,我们提出了一种多尺度管道,允许基于脊柱畸形的存在与否自动对鱼类胚胎(青鳉:Oryzias latipes)进行分类。所提出的管道依赖于鱼类胚胎 2D 图像的获取,基于数学形态学算子的特征提取以及机器学习分类。在图像采集之后,使用分割工具来检测胚胎,然后再分析几个形态特征。然后,基于机器学习的方法应用于这些特征,根据轴向畸形的存在自动对胚胎进行分类。我们通过与显微镜下由经过培训的操作员进行的 3D 观察的金标准进行 10 倍交叉验证,在包含 1459 张图像的数据库上构建和验证了我们的学习模型。我们的管道在数据库中包含的 85%的情况下实现了正确的分类。这一百分比与经过培训的人类操作员在 2D 图像上工作的成功率相似。我们的方法的主要优势是我们的图像分析管道的计算成本低,可保证最佳的吞吐量分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验