Suppr超能文献

MIR93(microRNA-93)通过靶向自噬调节胶质母细胞瘤的肿瘤发生和治疗反应。

MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy.

机构信息

a The Ken & Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute , The Robert H. Lurie Comprehensive Cancer Center, Northwestern Universityd Feinberg School of Medicine , Chicago , IL , USA.

b Department of Neurological Surgery , Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA.

出版信息

Autophagy. 2019 Jun;15(6):1100-1111. doi: 10.1080/15548627.2019.1569947. Epub 2019 Jan 31.

Abstract

Macroautophagy/autophagy is a natural intracellular process that maintains cellular homeostasis and protects cells from death under stress conditions. Autophagy sustains tumor survival and growth when induced by common cancer treatments, including IR and cytotoxic chemotherapy, thereby contributing to therapeutic resistance of tumors. In this study, we report that the expression of MIR93, noted in two clinically relevant tumor subtypes of GBM, influenced GSC phenotype as well as tumor response to therapy through its effects on autophagy. Our mechanistic studies revealed that MIR93 regulated autophagic activities in GSCs through simultaneous inhibition of multiple autophagy regulators, including BECN1/Beclin 1, ATG5, ATG4B, and SQSTM1/p62. Moreover, two first-line treatments for GBM, IR and temozolomide (TMZ), as well as rapamycin (Rap), the prototypic MTOR inhibitor, decreased MIR93 expression that, in turn, stimulated autophagic processes in GSCs. Inhibition of autophagy by ectopic MIR93 expression, or via autophagy inhibitors NSC (an ATG4B inhibitor) and CQ, enhanced the activity of IR and TMZ against GSCs. Collectively, our findings reveal a key role for MIR93 in the regulation of autophagy and suggest a combination treatment strategy involving the inhibition of autophagy while administering cytotoxic therapy. Abbreviations: ACTB: actin beta; ATG4B: autophagy related 4B cysteine peptidase; ATG5: autophagy related 5; BECN1: beclin 1; CL: classical; CQ: chloroquine diphosphate; CSCs: cancer stem cells; GBM: glioblastoma; GSCs: glioma stem-like cells; HEK: human embryonic kidney; IB: immunoblotting; IF: immunofluorescent staining; IR: irradiation; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MES: mesenchymal; MIR93: microRNA 93; MIRC: a control miRNA; miRNA/miR: microRNA; MTOR: mechanistic target of rapamycin kinase; NSC: NSC185085; PN: proneural; qRT-PCR: quantitative reverse transcription-polymerase chain reaction; Rap: rapamycin; SQSTM1/p62: sequestosome 1; TCGA: the cancer genome atlas; TMZ: temozolomide; WT: wild type; ZIP93: lentiviral miRZIP targeting MIR93; ZIPC: lentiviral miRZip targeting control miRNA.

摘要

自噬是一种维持细胞内环境稳定和保护细胞免受应激条件下死亡的天然细胞内过程。自噬在常见的癌症治疗(包括辐射和细胞毒性化疗)诱导时维持肿瘤的存活和生长,从而导致肿瘤的治疗抵抗。在这项研究中,我们报告了 MIR93 的表达,在两种临床上相关的 GBM 肿瘤亚型中被注意到,通过其对自噬的影响影响 GSC 表型以及肿瘤对治疗的反应。我们的机制研究表明,MIR93 通过同时抑制多个自噬调节剂,包括 BECN1/Beclin 1、ATG5、ATG4B 和 SQSTM1/p62,调节 GSCs 中的自噬活性。此外,两种一线治疗 GBM 的方法,即辐射和替莫唑胺(TMZ)以及雷帕霉素(Rap),即典型的 MTOR 抑制剂,降低了 MIR93 的表达,进而刺激了 GSCs 中的自噬过程。通过外源性 MIR93 表达或通过自噬抑制剂 NSC(ATG4B 抑制剂)和 CQ 抑制自噬,增强了辐射和 TMZ 对 GSCs 的活性。总之,我们的发现揭示了 MIR93 在自噬调节中的关键作用,并提出了一种联合治疗策略,即抑制自噬同时进行细胞毒性治疗。缩写:ACTB:β 肌动蛋白;ATG4B:自噬相关 4B 半胱氨酸肽酶;ATG5:自噬相关 5;BECN1:beclin 1;CL:经典;CQ:氯喹二磷酸盐;CSCs:癌症干细胞;GBM:胶质母细胞瘤;GSCs:神经胶质瘤样干细胞;HEK:人胚胎肾;IB:免疫印迹;IF:免疫荧光染色;IR:辐射;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;MES:间质;MIR93:microRNA 93;MIRC:对照 miRNA;miRNA/miR:microRNA;MTOR:雷帕霉素机制靶标激酶;NSC:NSC185085;PN:原神经;qRT-PCR:定量逆转录聚合酶链反应;Rap:雷帕霉素;SQSTM1/p62:自噬体 1;TCGA:癌症基因组图谱;TMZ:替莫唑胺;WT:野生型;ZIP93:靶向 MIR93 的慢病毒 miRZIP;ZIPC:靶向对照 miRNA 的慢病毒 miRZip。

相似文献

1
MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy.
Autophagy. 2019 Jun;15(6):1100-1111. doi: 10.1080/15548627.2019.1569947. Epub 2019 Jan 31.
2
Inhibition of autophagy and induction of glioblastoma cell death by NEO214, a perillyl alcohol-rolipram conjugate.
Autophagy. 2023 Dec;19(12):3169-3188. doi: 10.1080/15548627.2023.2242696. Epub 2023 Aug 6.
3
MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress.
Autophagy. 2019 Mar;15(3):375-390. doi: 10.1080/15548627.2018.1531197. Epub 2018 Oct 16.
4
Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1.
Autophagy. 2019 Mar;15(3):478-492. doi: 10.1080/15548627.2018.1522467. Epub 2018 Sep 22.
6
Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy.
Autophagy. 2018;14(11):2007-2022. doi: 10.1080/15548627.2018.1501133. Epub 2018 Aug 17.
7
Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy.
Neurosurg Focus. 2014 Dec;37(6):E12. doi: 10.3171/2014.9.FOCUS14504.
8
A fine-tuning mechanism underlying self-control for autophagy: deSUMOylation of BECN1 by SENP3.
Autophagy. 2020 Jun;16(6):975-990. doi: 10.1080/15548627.2019.1647944. Epub 2019 Aug 2.
9
Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P.
Autophagy. 2018;14(12):2065-2082. doi: 10.1080/15548627.2018.1501135. Epub 2018 Aug 17.

引用本文的文献

2
Overcoming temozolomide resistance in glioma: recent advances and mechanistic insights.
Acta Neuropathol Commun. 2025 Jun 5;13(1):126. doi: 10.1186/s40478-025-02046-4.
3
Dual role of autophagy in bone metastasis: mechanistic insights and therapeutic targeting.
Am J Clin Exp Urol. 2025 Apr 25;13(2):92-117. doi: 10.62347/QCPV6064. eCollection 2025.
4
Advances in targeting protein S-palmitoylation in tumor immunity and therapy.
Front Oncol. 2025 Feb 24;15:1547636. doi: 10.3389/fonc.2025.1547636. eCollection 2025.
5
Mechanism of microRNA-152-3p-Mediated Regulation of Autophagy and Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells.
Onco Targets Ther. 2025 Feb 4;18:179-197. doi: 10.2147/OTT.S485100. eCollection 2025.
6
Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities.
J Transl Med. 2025 Jan 13;23(1):52. doi: 10.1186/s12967-024-06063-0.
7
Unlocking the Potential of Circulating miRNAs as Biomarkers in Glioblastoma.
Life (Basel). 2024 Oct 16;14(10):1312. doi: 10.3390/life14101312.
8
Regulation of autophagy by non-coding RNAs in human glioblastoma.
Med Oncol. 2024 Oct 7;41(11):260. doi: 10.1007/s12032-024-02513-3.
9
Epigenetics in the formation of pathological aggregates in amyotrophic lateral sclerosis.
Front Mol Neurosci. 2024 Sep 3;17:1417961. doi: 10.3389/fnmol.2024.1417961. eCollection 2024.
10
Stanniocalcin-1 promotes temozolomide resistance of glioblastoma through regulation of MGMT.
Sci Rep. 2024 Aug 30;14(1):20199. doi: 10.1038/s41598-024-68902-w.

本文引用的文献

1
MiR-93 inhibition ameliorates OGD/R induced cardiomyocyte apoptosis by targeting Nrf2.
Eur Rev Med Pharmacol Sci. 2017 Dec;21(23):5456-5461. doi: 10.26355/eurrev_201712_13935.
2
MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma.
Cancer Cell. 2017 Dec 11;32(6):840-855.e8. doi: 10.1016/j.ccell.2017.11.005.
4
Keap1/Cullin3 Modulates p62/SQSTM1 Activity via UBA Domain Ubiquitination.
Cell Rep. 2017 Aug 22;20(8):1994. doi: 10.1016/j.celrep.2017.08.019.
10
Chemotherapy-Induced Ca Release Stimulates Breast Cancer Stem Cell Enrichment.
Cell Rep. 2017 Feb 21;18(8):1946-1957. doi: 10.1016/j.celrep.2017.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验