Cognitive Neuroimaging Unit, Emirates College for Advanced Education, PO Box: 126662, Abu Dhabi, United Arab Emirates.
Brain Struct Funct. 2019 Apr;224(3):1377-1383. doi: 10.1007/s00429-019-01833-9. Epub 2019 Jan 17.
FMRI-based laterality index (LI) is widely used to assess relative left-right differences in brain function. Here we investigated objective ways to generate categorical LI. By defining left and right hemisphere contributions as discrete random variables, it was possible to depict the probability mass function of LI. Its distribution has a shape of a symmetrical truncated exponential function. We demonstrate that LI = ± 0.2 is an objective cut-off to categorize classification of hemispheric dominance. We then searched for parallels between LI and classic similarity or association indices. A parallel between LI and Sorensen-Dice index can be established under maximal voxel-wise overlap between left and right hemispheres. To redefine LI as a proper distance metric, we suggest instead to relate LI to Jaccard-Tanimoto similarity index. Accordingly, a new LI formula can be derived: LI = LH-RH/max(LH,RH). Using this new formula, all LI values follow a uniform-like distribution, and optimal categorization of hemispheric dominance can be achieved at cut-off LI = ± 1/3. Overall, this study investigated some statistical properties of LI and revealed interesting parallels with classic similarity indices in taxonomy. The theoretical distribution of LI should be taken into account when quantifying any existing bias in empirical distributions of lateralization in healthy or clinical populations.
基于功能磁共振成像的侧化指数(LI)被广泛用于评估大脑功能的左右相对差异。在这里,我们研究了生成分类 LI 的客观方法。通过将左半球和右半球的贡献定义为离散的随机变量,可以描绘 LI 的概率质量函数。它的分布形状为对称截断指数函数。我们证明,LI=±0.2 是对半球优势进行分类的客观截止值。然后,我们在 LI 和经典相似性或关联指数之间寻找相似之处。在左、右半球之间最大体素重叠的情况下,可以建立 LI 和 Sørensen-Dice 指数之间的平行关系。为了将 LI 重新定义为合适的距离度量,我们建议将 LI 与 Jaccard-Tanimoto 相似性指数联系起来。相应地,可以推导出一个新的 LI 公式:LI=LH-RH/max(LH,RH)。使用这个新公式,所有的 LI 值都遵循一致的分布,并且可以在 LI=±1/3 的截止值处实现半球优势的最佳分类。总的来说,本研究调查了 LI 的一些统计特性,并揭示了它与分类学中经典相似性指数之间的有趣相似之处。在量化健康或临床人群中侧化的任何现有偏差的经验分布时,应该考虑 LI 的理论分布。