用于临床前微辐射器的全面几何质量保证框架。

A comprehensive geometric quality assurance framework for preclinical microirradiators.

机构信息

Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.

出版信息

Med Phys. 2019 Apr;46(4):1840-1851. doi: 10.1002/mp.13387. Epub 2019 Feb 8.

Abstract

PURPOSE

The mechanical and geometric accuracy of small animal image-guided radiotherapy (SA-IGRT) systems is critical and is affected by a number of system-related factors. Because of the small dimensions involved in preclinical radiotherapy research, such factors can individually and/or cumulatively contribute to significant errors in the small animal radiation research. In this study, we developed and implemented a comprehensive quality assurance (QA) framework for characterizing the mechanical and geometric constancy and accuracy of the small animal radiation research platform (SARRP) system.

METHODS

We quantified the accuracy of gantry and stage rotation isocentricity and positional stage translations. We determined the accuracy and symmetry of field sizes formed by collimators. We evaluated collimator assembly system performance by characterization of collimator axis alignment along the beam axis during gantry rotation. Furthermore, we quantified the end-to-end precision and accuracy of image-guided delivery by examining the congruence of intended (e.g., imaging) and actual delivery (measured during experiment) isocenters.

RESULTS

The fine and broad beams showed different central axes. The center of the beam was offset toward the cathode (0.22 ± 0.05 mm) when switching the beam from a fine to a broad focus. Larger (custom-made) collimators were more symmetrically centered than smaller (standard) collimators. The field formed by a 1-mm circular collimator was found to deviate from the circular shape, measuring 1.55 mm and 1.25 mm in the X and Y directions, respectively. The 40-mm collimator showed a field that was 1.65 (4.13%) and 1.3 (3.25%) mm smaller than nominal values in the X and Y directions, respectively, and the 30-mm collimator field was smaller by 0.75 mm (2.5%) in the X direction. Results showed that fields formed by other collimators were accurate in both directions and had ≤2% error. The size of the gantry rotation isocenter was 1.45 ± 0.15 mm. While the gantry rotated, lateral and longitudinal isocenter displacements ranged from 0 to -0.34 and -0.44 to 0.33 mm, respectively. Maximum lateral and longitudinal displacements were found at obliques gantry angles of -135° and 45°, respectively. The stage translational accuracies were 0.015, 0.010, and 0 mm in the X, Y, and Z directions, respectively. The size of the stage rotation runout was 2.73 ± 0.3 mm. Maximum displacements of the stage rotational axis were -0.38 (X direction) and -0.26 (Y direction) mm at stage angles of -45° and -135°, respectively. We found that displacements of intended and actual delivery isocenters were 0.24 ± 0.10, 0.12 ± 0.62, and 0.12 ± 0.42 mm in the X, Y, and Z directions, respectively.

CONCLUSION

We used the SARRP built-in electronic portal imaging device (EPID) to perform most of the geometric QA tests, demonstrating the utility of the EPID for characterizing the geometric accuracy and precision of the SA-IGRT system. However, in principle, the methodology and tests developed here are applicable to any digital imaging detector available in SA-IGRT systems or film. The flexibility of film allows these tests to be adapted for QA of non-IGRT, cabinet irradiators, which make up many of preclinical small animal irradiators.

摘要

目的

小动物图像引导放射治疗(SA-IGRT)系统的机械和几何精度至关重要,并且受到许多系统相关因素的影响。由于临床前放射治疗研究涉及到小尺寸,因此这些因素可能会单独和/或累积导致小动物辐射研究中的显著误差。在这项研究中,我们开发并实施了一个全面的质量保证(QA)框架,用于描述 SARRP 系统的机械和几何稳定性和准确性。

方法

我们量化了旋转机架和平台旋转的等中心精度和位置平台平移的准确性。我们确定了准直器形成的射野大小的准确性和对称性。通过在旋转机架时沿光束轴对准准直器轴的特性,我们评估了准直器组件系统的性能。此外,通过检查预期(例如成像)和实际交付(在实验过程中测量)等中心的一致性,我们量化了图像引导交付的端到端精度和准确性。

结果

细束和宽束的中心轴不同。当从细焦点切换到宽焦点时,光束的中心向阴极偏移(0.22±0.05mm)。较大的(定制)准直器比较小的(标准)准直器更对称地居中。直径为 1mm 的圆形准直器形成的射野偏离圆形,在 X 和 Y 方向上分别为 1.55mm 和 1.25mm。40mm 准直器在 X 和 Y 方向上的射野分别比标称值小 1.65(4.13%)和 1.3(3.25%)mm,30mm 准直器在 X 方向上的射野小 0.75mm(2.5%)。结果表明,其他准直器形成的射野在两个方向上都是准确的,误差在 2%以内。旋转机架等中心的大小为 1.45±0.15mm。当旋转机架时,横向和纵向等中心位移范围分别为 0 至-0.34 和-0.44 至 0.33mm。在斜角机架角度为-135°和 45°时,分别发现最大的横向和纵向位移。平台平移精度分别为 X、Y 和 Z 方向的 0.015、0.010 和 0mm。平台旋转行程的大小为 2.73±0.3mm。在-45°和-135°的平台角度下,旋转轴的最大位移分别为-0.38(X 方向)和-0.26(Y 方向)mm。我们发现,在 X、Y 和 Z 方向上,预期和实际交付等中心的位移分别为 0.24±0.10、0.12±0.62 和 0.12±0.42mm。

结论

我们使用 SARRP 内置的电子门户成像设备(EPID)进行了大多数几何 QA 测试,证明了 EPID 用于表征 SA-IGRT 系统的几何精度和精度的实用性。然而,原则上,这里开发的方法和测试适用于 SA-IGRT 系统或胶片中可用的任何数字成像探测器。胶片的灵活性允许这些测试适应非 IGRT、机柜辐照器的 QA,这些辐照器构成了许多临床前小动物辐照器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索