CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS , Xinjiang Key Laboratory of Electronic Information Materials and Devices , 40-1 South Beijing Road , Urumqi 830011 , China.
Changji University , Changji 831100 , China.
J Am Chem Soc. 2019 Feb 20;141(7):3258-3264. doi: 10.1021/jacs.8b13402. Epub 2019 Feb 1.
Birefringent materials, the key components in modulating the polarization of light, are of great importance in optical communication and the laser industry. Limited by their transparency range, few birefringent materials can be practically used in the deep ultraviolet (DUV, λ < 200 nm) region. Different from the traditional BO- or BO-based DUV birefringent crystals, we propose a new functional gene, the BO unit, for designing birefringent materials. Excitingly, the synergistic combination of LiBO and NaBO generates a new compound, LiNaBO, with enhanced optical properties. The LiNaBO crystal with a size of up to 35 × 15 × 5 mm was grown by the top-seeded solution growth (TSSG) method, and its physicochemical properties were systematically characterized. LiNaBO features a large amount of birefringence (0.095@532 nm), a short DUV cutoff edge (181 nm) with a high laser-induced damage threshold (LDT, 7.5 GW/cm @1064 nm, 10 ns), favorable anisotropic thermal expansion (α/α = 5.6), and the lowest crystal growth temperature (<609 °C) among the commercial birefringent crystals. Moreover, the influences of the BO structural configurations on the optical anisotropy were explored. The fascinating experimental results will provide a prominent DUV birefringent crystal and an effective synthesis strategy, which can facilitate the design of DUV birefringent materials.
双折射材料是调节光偏振的关键组成部分,在光通信和激光工业中具有重要意义。由于其透明度范围有限,很少有双折射材料可以实际应用于深紫外(DUV,λ<200nm)区域。与传统的 BO 或 BO 基 DUV 双折射晶体不同,我们提出了一种新的功能基因 BO 单元,用于设计双折射材料。令人兴奋的是,LiBO 和 NaBO 的协同组合产生了一种新的化合物 LiNaBO,具有增强的光学性质。通过顶部籽晶溶液生长(TSSG)方法生长出尺寸达 35×15×5mm 的 LiNaBO 晶体,并对其物理化学性质进行了系统的表征。LiNaBO 具有大的双折射(0.095@532nm)、短的 DUV 截止边缘(181nm)和高的激光诱导损伤阈值(LDT,7.5GW/cm@1064nm,10ns)、有利的各向异性热膨胀(α/α=5.6)以及在商业双折射晶体中最低的晶体生长温度(<609°C)。此外,还探讨了 BO 结构构型对光学各向异性的影响。迷人的实验结果将提供一种突出的 DUV 双折射晶体和一种有效的合成策略,这将有助于 DUV 双折射材料的设计。