Suppr超能文献

高纵横比和低阻塞比的微流控圆柱周围的类蠕虫胶束溶液流动。

Flow of wormlike micellar solutions around microfluidic cylinders with high aspect ratio and low blockage ratio.

机构信息

Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology, Onna, Okinawa 904-0495, Japan.

出版信息

Soft Matter. 2019 Feb 27;15(9):1927-1941. doi: 10.1039/c8sm02099j.

Abstract

We employ time-resolved flow velocimetry and birefringence imaging methods to study the flow of a well-characterized shear-banding wormlike micellar solution around a novel glass-fabricated microfluidic circular cylinder. In contrast with typical microfluidic cylinders, our geometry is characterized by a high aspect ratio α = H/W = 5 and a low blockage ratio β = 2r/W = 0.1, where H and W are the channel height and width, and the cylinder radius r = 20 μm. The small cylinder radius allows access up to very high Weissenberg numbers 1.9 ≤ Wi = λMU/r ≤ 3750 (where λM is the Maxwell relaxation time) while inertial effects remain entirely negligible (Reynolds number, Re < 10-4). At low Wi values, the flow remains steady and symmetric and a birefringent region (indicating micellar alignment and tensile stress) develops downstream of the cylinder. Above a critical value Wic ≈ 60 the flow transitions to a steady asymmetric state, characterized as a supercritical pitchfork bifurcation, in which the fluid takes a preferential path around one side of the cylinder. At a second critical value Wic2 ≈ 130, the flow becomes time-dependent, with a characteristic frequency f0 ≈ 1/λM. This initial transition to time dependence has characteristics of a subcritical Hopf bifurcation. Power spectra of the measured fluctuations become complex as Wi is increased further, showing a gradual slowing down of the dynamics and emergence of harmonics. A final transition at very high Wic3 corresponds to the re-emergence of a single peak in the power spectrum but at much higher frequency. We discuss this in terms of possible flow-induced breakage of micelles into shorter species with a faster relaxation time.

摘要

我们采用时间分辨流动测速和双折射成像方法研究了一种具有良好特征的剪切带蠕虫状胶束溶液在新型玻璃制造的微流圆形圆柱周围的流动。与典型的微流圆柱不同,我们的几何形状具有高纵横比α=H/W=5和低阻塞比β=2r/W=0.1,其中 H 和 W 分别是通道的高度和宽度,而圆柱半径 r=20μm。小圆柱半径允许达到非常高的 Weissenberg 数 1.9≤Wi=λMU/r≤3750(其中 λM 是 Maxwell 弛豫时间),而惯性效应仍然完全可以忽略(雷诺数 Re<10-4)。在低 Wi 值下,流动保持稳定和对称,并且在圆柱下游形成一个双折射区域(表示胶束取向和拉伸应力)。在临界值 Wic≈60 以上,流动过渡到稳定的非对称状态,特征为超临界叉形分岔,其中流体优先沿着圆柱的一侧流动。在第二个临界值 Wic2≈130 处,流动变得依赖于时间,特征频率 f0≈1/λM。这种向时间依赖性的初始过渡具有亚临界 Hopf 分岔的特征。随着 Wi 的进一步增加,测量的波动的功率谱变得复杂,显示出动力学逐渐减慢和出现谐波。在非常高的 Wi 值 Wic3 处的最终过渡对应于功率谱中单个峰值的重新出现,但频率要高得多。我们根据可能的流动诱导胶束断裂成具有更快弛豫时间的较短物种来讨论这一点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验