Suppr超能文献

粘弹性流体绕圆柱流动时的上游壁面涡旋。

Upstream wall vortices in viscoelastic flow past a cylinder.

作者信息

Hopkins Cameron C, Haward Simon J, Shen Amy Q

机构信息

Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan.

出版信息

Soft Matter. 2022 Jul 6;18(26):4868-4880. doi: 10.1039/d2sm00418f.

Abstract

We report a novel inertia-less, elastic flow instability for a viscoelastic, shear-thinning wormlike micellar solution flowing past a microcylinder in a channel with blockage ratio = 2/ = 0.5 and aspect ratio = / ≈ 5, where ≈ 100 μm is the cylinder radius, is the channel width, and is the channel height. The instability manifests upstream of the cylinder and changes form with increasing Weissenberg number over the range 0.5 ≲ Wi = / ≲ 900, where is the average flow velocity and is the terminal relaxation time of the fluid. Beyond a first critical Wi, the instability begins as a bending of the streamlines near the upstream pole of the cylinder that breaks the symmetry of the flow. Beyond a second critical Wi, small, time-steady, and approximately symmetric wall-attached vortices form upstream of the cylinder. Beyond a third critical Wi, the flow becomes time dependent and pulses with a characteristic frequency commensurate with the breakage timescale of the wormlike micelles. This is accompanied by a breaking of the symmetry of the wall-attached vortices, where one vortex becomes considerably larger than the other. Finally, beyond a fourth critical Wi, a vortex forms attached to the upstream pole of the cylinder whose length fluctuates in time. The flow is highly time dependent, and the cylinder-attached vortex and wall-attached vortices compete dynamically for space and time in the channel. Our results add to the rapidly growing understanding of viscoelastic flow instabilities in microfluidic geometries.

摘要

我们报道了一种新型的无惯性、弹性流动不稳定性,该不稳定性发生在一种粘弹性、剪切变稀的蠕虫状胶束溶液流经通道中堵塞比(B = 2r/W = 0.5)且纵横比(AR = H/W ≈ 5)的微圆柱体时,其中(r ≈ 100 μm)是圆柱体半径,(W)是通道宽度,(H)是通道高度。这种不稳定性在圆柱体上游表现出来,并且在(0.5 ≲ Wi = Uτ/λ ≲ 900)的范围内,随着魏森贝格数的增加而改变形式,其中(U)是平均流速,(τ)是流体的终端松弛时间。超过第一个临界魏森贝格数时,不稳定性开始于圆柱体上游极点附近流线的弯曲,这打破了流动的对称性。超过第二个临界魏森贝格数时,在圆柱体上游形成小的、时间稳定且近似对称的壁面附着涡旋。超过第三个临界魏森贝格数时,流动变得随时间变化,并以与蠕虫状胶束的破裂时间尺度相当的特征频率脉动。这伴随着壁面附着涡旋对称性的破坏,其中一个涡旋变得比另一个大得多。最后,超过第四个临界魏森贝格数时,一个涡旋附着在圆柱体的上游极点,其长度随时间波动。流动高度随时间变化,附着在圆柱体上的涡旋和壁面附着涡旋在通道中动态地争夺空间和时间。我们的结果增进了对微流体几何形状中粘弹性流动不稳定性的快速增长的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验