Suppr超能文献

迈向血液肿瘤患者侵袭性霉菌病的电子监测:一个结合胸部计算机断层扫描报告的自然语言处理、微生物学和抗真菌药物数据的专家系统。

Toward Electronic Surveillance of Invasive Mold Diseases in Hematology-Oncology Patients: An Expert System Combining Natural Language Processing of Chest Computed Tomography Reports, Microbiology, and Antifungal Drug Data.

作者信息

Ananda-Rajah Michelle R, Bergmeir Christoph, Petitjean François, Slavin Monica A, Thursky Karin A, Webb Geoffrey I

机构信息

Michelle R. Ananda-Rajah, Alfred Health; Michelle R. Ananda-Rajah, Christoph Bergmeir, François Petitjean, and Geoffrey I. Webb, Monash University; and Monica A. Slavin and Karin A. Thursky, Peter Doherty Centre for Infection and Immunity; University of Melbourne, Melbourne, Victoria, Australia.

出版信息

JCO Clin Cancer Inform. 2017 Nov;1:1-10. doi: 10.1200/CCI.17.00011.

Abstract

PURPOSE

Prospective epidemiologic surveillance of invasive mold disease (IMD) in hematology patients is hampered by the absence of a reliable laboratory prompt. This study develops an expert system for electronic surveillance of IMD that combines probabilities using natural language processing (NLP) of computed tomography (CT) reports with microbiology and antifungal drug data to improve prediction of IMD.

METHODS

Microbiology indicators and antifungal drug-dispensing data were extracted from hospital information systems at three tertiary hospitals for 123 hematology-oncology patients. Of this group, 64 case patients had 26 probable/proven IMD according to international definitions, and 59 patients were uninfected controls. Derived probabilities from NLP combined with medical expertise identified patients at high likelihood of IMD, with remaining patients processed by a machine-learning classifier trained on all available features.

RESULTS

Compared with the baseline text classifier, the expert system that incorporated the best performing algorithm (naïve Bayes) improved specificity from 50.8% (95% CI, 37.5% to 64.1%) to 74.6% (95% CI, 61.6% to 85.0%), reducing false positives by 48% from 29 to 15; improved sensitivity slightly from 96.9% (95% CI, 89.2% to 99.6%) to 98.4% (95% CI, 91.6% to 100%); and improved receiver operating characteristic area from 73.9% (95% CI, 67.1% to 80.6%) to 92.8% (95% CI, 88% to 97.5%).

CONCLUSION

An expert system that uses multiple sources of data (CT reports, microbiology, antifungal drug dispensing) is a promising approach to continuous prospective surveillance of IMD in the hospital, and demonstrates reduced false notifications (positives) compared with NLP of CT reports alone. Our expert system could provide decision support for IMD surveillance, which is critical to antifungal stewardship and improving supportive care in cancer.

摘要

目的

由于缺乏可靠的实验室提示,血液学患者侵袭性霉菌病(IMD)的前瞻性流行病学监测受到阻碍。本研究开发了一种用于IMD电子监测的专家系统,该系统结合了使用计算机断层扫描(CT)报告的自然语言处理(NLP)得出的概率与微生物学和抗真菌药物数据,以改善对IMD的预测。

方法

从三家三级医院的医院信息系统中提取了123例血液肿瘤患者的微生物学指标和抗真菌药物配药数据。在这组患者中,根据国际定义,64例病例患者有26例可能/确诊的IMD,59例患者为未感染对照。通过NLP结合医学专业知识得出的概率识别出IMD可能性高的患者,其余患者由基于所有可用特征训练的机器学习分类器进行处理。

结果

与基线文本分类器相比,纳入表现最佳算法(朴素贝叶斯)的专家系统将特异性从50.8%(95%CI,37.5%至64.1%)提高到74.6%(95%CI,61.6%至85.0%),假阳性从29例减少48%至15例;敏感性从96.9%(95%CI,89.2%至99.6%)略有提高至98.4%(95%CI,91.6%至100%);受试者工作特征曲线下面积从73.9%(95%CI,67.1%至80.6%)提高到92.8%(95%CI,88%至97.5%)。

结论

使用多源数据(CT报告、微生物学、抗真菌药物配药)的专家系统是医院对IMD进行持续前瞻性监测的一种有前景的方法,与仅对CT报告进行NLP相比,显示出减少了错误通知(阳性)。我们的专家系统可为IMD监测提供决策支持,这对抗真菌管理和改善癌症支持性护理至关重要。

相似文献

4
Natural language processing of head CT reports to identify intracranial mass effect: CTIME algorithm.
Am J Emerg Med. 2022 Jan;51:388-392. doi: 10.1016/j.ajem.2021.11.001. Epub 2021 Nov 9.
5
Automated Outcome Classification of Computed Tomography Imaging Reports for Pediatric Traumatic Brain Injury.
Acad Emerg Med. 2016 Feb;23(2):171-8. doi: 10.1111/acem.12859. Epub 2016 Jan 14.
7
Automatic detection of patients with invasive fungal disease from free-text computed tomography (CT) scans.
J Biomed Inform. 2015 Feb;53:251-60. doi: 10.1016/j.jbi.2014.11.009. Epub 2014 Nov 24.
8
A natural language processing pipeline for pairing measurements uniquely across free-text CT reports.
J Biomed Inform. 2015 Feb;53:36-48. doi: 10.1016/j.jbi.2014.08.015. Epub 2014 Sep 6.
9
Natural Language Processing of Radiology Reports in Patients With Hepatocellular Carcinoma to Predict Radiology Resource Utilization.
J Am Coll Radiol. 2019 Jun;16(6):840-844. doi: 10.1016/j.jacr.2018.12.004. Epub 2019 Mar 2.

引用本文的文献

1
Real-time data in cancer registries: Validation of an automated data extraction system.
iScience. 2025 Jul 3;28(8):113056. doi: 10.1016/j.isci.2025.113056. eCollection 2025 Aug 15.
2
Three-Dimensional Disease Outbreak Surveillance System in a Tertiary Hospital in Singapore: A Proof of Concept.
Mayo Clin Proc Digit Health. 2023 May 15;1(2):172-184. doi: 10.1016/j.mcpdig.2023.04.001. eCollection 2023 Jun.
3
Applications of Artificial Intelligence in Vasculitides: A Systematic Review.
ACR Open Rheumatol. 2025 Mar;7(3):e70016. doi: 10.1002/acr2.70016.
4
Artificial intelligence in antimicrobial stewardship: a systematic review and meta-analysis of predictive performance and diagnostic accuracy.
Eur J Clin Microbiol Infect Dis. 2025 Mar;44(3):463-513. doi: 10.1007/s10096-024-05027-y. Epub 2025 Jan 6.
5
Patterns and Drivers of Antifungal Prescribing in Acute Leukemia: A Retrospective Cohort Study.
Open Forum Infect Dis. 2024 Mar 1;11(6):ofae094. doi: 10.1093/ofid/ofae094. eCollection 2024 Jun.
8
An overview on the current available treatment for COVID-19 and the impact of antibiotic administration during the pandemic.
Braz J Med Biol Res. 2021 Dec 10;55:e11631. doi: 10.1590/1414-431X2021e11631. eCollection 2021.
9
A frame semantic overview of NLP-based information extraction for cancer-related EHR notes.
J Biomed Inform. 2019 Dec;100:103301. doi: 10.1016/j.jbi.2019.103301. Epub 2019 Oct 4.

本文引用的文献

1
2
A Pilot Study of a Computerized Decision Support System to Detect Invasive Fungal Infection in Pediatric Hematology/Oncology Patients.
Infect Control Hosp Epidemiol. 2015 Nov;36(11):1313-7. doi: 10.1017/ice.2015.179. Epub 2015 Aug 17.
3
Antifungal stewardship in a tertiary-care institution: a bedside intervention.
Clin Microbiol Infect. 2015 May;21(5):492.e1-9. doi: 10.1016/j.cmi.2015.01.013. Epub 2015 Jan 23.
4
Automatic detection of patients with invasive fungal disease from free-text computed tomography (CT) scans.
J Biomed Inform. 2015 Feb;53:251-60. doi: 10.1016/j.jbi.2014.11.009. Epub 2014 Nov 24.
6
Towards prevention of acute syndromes: electronic identification of at-risk patients during hospital admission.
Appl Clin Inform. 2014 Jan 22;5(1):58-72. doi: 10.4338/ACI-2013-07-RA-0045. eCollection 2014.
7
Using the electronic medical record to identify community-acquired pneumonia: toward a replicable automated strategy.
PLoS One. 2013 Aug 13;8(8):e70944. doi: 10.1371/journal.pone.0070944. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验