Suppr超能文献

利用机器学习缩小侵袭性霉菌病监测与抗真菌管理审计之间的差距

Closing the Gap in Surveillance and Audit of Invasive Mold Diseases for Antifungal Stewardship Using Machine Learning.

作者信息

Baggio Diva, Peel Trisha, Peleg Anton Y, Avery Sharon, Prayaga Madhurima, Foo Michelle, Haffari Gholamreza, Liu Ming, Bergmeir Christoph, Ananda-Rajah Michelle

机构信息

Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne 3004, VIC, Australia.

General Medical Unit, Alfred Health, Melbourne 3004, VIC, Australia.

出版信息

J Clin Med. 2019 Sep 5;8(9):1390. doi: 10.3390/jcm8091390.

Abstract

Clinical audit of invasive mold disease (IMD) in hematology patients is inefficient due to the difficulties of case finding. This results in antifungal stewardship (AFS) programs preferentially reporting drug cost and consumption rather than measures that actually reflect quality of care. We used machine learning-based natural language processing (NLP) to non-selectively screen chest tomography (CT) reports for pulmonary IMD, verified by clinical review against international definitions and benchmarked against key AFS measures. NLP screened 3014 reports from 1 September 2008 to 31 December 2017, generating 784 positives that after review, identified 205 IMD episodes (44% probable-proven) in 185 patients from 50,303 admissions. Breakthrough-probable/proven-IMD on antifungal prophylaxis accounted for 60% of episodes with serum monitoring of voriconazole or posaconazole in the 2 weeks prior performed in only 53% and 69% of episodes, respectively. Fiberoptic bronchoscopy within 2 days of CT scan occurred in only 54% of episodes. The average turnaround of send-away bronchoalveolar galactomannan of 12 days (range 7-22) was associated with high empiric liposomal amphotericin consumption. A random audit of 10% negative reports revealed two clinically significant misses (0.9%, 2/223). This is the first successful use of applied machine learning for institutional IMD surveillance across an entire hematology population describing process and outcome measures relevant to AFS. Compared to current methods of clinical audit, semi-automated surveillance using NLP is more efficient and inclusive by avoiding restrictions based on any underlying hematologic condition, and has the added advantage of being potentially scalable.

摘要

由于病例发现困难,对血液学患者侵袭性霉菌病(IMD)的临床审计效率低下。这导致抗真菌管理(AFS)计划优先报告药物成本和消耗量,而不是实际反映医疗质量的指标。我们使用基于机器学习的自然语言处理(NLP)对胸部断层扫描(CT)报告进行非选择性筛查以检测肺部IMD,并通过根据国际定义进行临床审查来验证,并与关键的AFS指标进行对比。NLP筛查了2008年9月1日至2017年12月31日期间的3014份报告,产生了784份阳性报告,经审查后,在50303例住院患者中的185例患者中确定了205例IMD发作(44%可能确诊)。在抗真菌预防期间发生的可能/确诊突破性IMD占发作的60%,在发作前2周内分别仅对53%和69%的发作进行了伏立康唑或泊沙康唑的血清监测。在CT扫描后2天内进行纤维支气管镜检查的发作仅占54%。送检支气管肺泡半乳甘露聚糖的平均周转时间为12天(范围7 - 22天),这与经验性使用高剂量脂质体两性霉素有关。对10%的阴性报告进行随机审计发现了两例具有临床意义的漏诊(0.9%,2/223)。这是首次成功将应用机器学习用于对整个血液学人群进行机构性IMD监测,描述了与AFS相关的过程和结果指标。与当前的临床审计方法相比,使用NLP的半自动监测更高效、更具包容性,因为它避免了基于任何潜在血液学状况的限制,并且具有潜在可扩展性的额外优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e3c/6780614/e3d2b76e175f/jcm-08-01390-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验