Departament d'Enginyeria Quimica, Rovira i Virgili, Tarragona, Spain.
Nanoscale. 2019 Jan 31;11(5):2282-2288. doi: 10.1039/c8nr09960j.
Blood circulation is the main distribution route for systemic delivery and the possibility to manipulate red blood cells (RBCs) by attaching nanoparticles to their surface provides a great opportunity for cargo delivery into tissues. Nanocarriers attached to RBCs can be delivered to specific organs orders of magnitude faster than if injected directly into the bloodstream. Another advantage is a shielding from recognition by the immune system, thereby increasing the efficiency of delivery. We present a high-throughput microfluidic method that can monitor the shape of drifting cells due to interactions with nanoparticles and characterize the 3D dispersion of fluorescent silica nanoparticles at the surface of RBCs. The combination of fluorescence microscopy with image analysis demonstrates that the adsorption of silica nanoparticles onto the surface of RBCs is strongly influenced by electrostatic interactions. A reduced number of intact RBCs with increasing nanoparticle concentration beyond a certain threshold points to a toxicity mechanism associated with the nanoparticle adsorption at the surface of RBCs.
血液循环是全身性给药的主要途径,通过将纳米颗粒附着在红细胞(RBC)表面来操纵红细胞的可能性为货物输送到组织中提供了很好的机会。附着在 RBC 上的纳米载体可以比直接注入血液更快地递送到特定的器官,其速度快了几个数量级。另一个优势是可以屏蔽免疫系统的识别,从而提高输送效率。我们提出了一种高通量的微流控方法,该方法可以监测由于与纳米颗粒相互作用而漂移的细胞的形状,并在 RBC 表面上对荧光二氧化硅纳米颗粒的 3D 分散进行特征化。荧光显微镜与图像分析相结合表明,二氧化硅纳米颗粒吸附到 RBC 表面上的情况强烈受到静电相互作用的影响。当纳米颗粒浓度超过一定阈值时,完整 RBC 的数量减少,这表明与纳米颗粒在 RBC 表面的吸附相关的毒性机制。