Division of Cancer Prevention, National Cancer Institute, Bethesda, MD.
Med Decis Making. 2019 Feb;39(2):130-136. doi: 10.1177/0272989X18819792. Epub 2019 Jan 18.
Studies to validate a cancer prediction model based on cancer screening markers collected in stored specimens from asymptomatic persons typically require large specimen collection sample sizes. A standard sample size calculation targets a true-positive rate (TPR) of 0.8 with a 2.5% lower bound of 0.7 at a false-positive rate (FPR) of 0.01 with a 5% upper bound of 0.03. If the probability of developing cancer during the study is P = 0.01, the specimen collection sample size based on the standard calculation is 7600.
The strategy to reduce the specimen collection sample size is to decrease both the lower bound of TPR and the upper bound of FPR while keeping a positive lower bound on the anticipated clinical utility.
The new sample size calculation targets a TPR of 0.4 with a 2.5% lower bound of 0.10 and an FPR of 0.0 with a 5% upper bound of 0.005. With P = 0.01, the specimen collection sample size based on the new calculation is 1800 instead of 7600.
The new sample size calculation requires a minimum benefit/cost ratio (number of false positives traded for a true positive). With P = 0.01, the minimum cost-benefit ratio is 5, which is plausible in many studies.
In validation studies for cancer screening markers, the strategy can substantially reduce the specimen collection sample size, substantially reducing costs and making some otherwise infeasible studies now feasible.
基于无症状人群储存标本中收集的癌症筛查标志物验证癌症预测模型的研究通常需要大样本量。标准样本量计算的目标是真阳性率(TPR)为 0.8,假阳性率(FPR)为 0.01 时有 2.5%的下限为 0.7,假阳性率(FPR)为 0.03 时有 5%的上限为 0.03。如果研究期间发生癌症的概率为 P = 0.01,则基于标准计算的标本采集样本量为 7600。
减少标本采集样本量的策略是降低 TPR 的下限和 FPR 的上限,同时保持预期临床效用的正下限。
新的样本量计算的 TPR 目标为 0.4,下限为 2.5%,为 0.10,FPR 为 0,上限为 5%,为 0.005。当 P = 0.01 时,基于新计算的标本采集样本量为 1800,而不是 7600。
新的样本量计算需要最小的收益/成本比(假阳性的数量换取真阳性的数量)。当 P = 0.01 时,最小的成本效益比为 5,在许多研究中是合理的。
在癌症筛查标志物的验证研究中,该策略可以大大减少标本采集样本量,从而大大降低成本,并使一些原本不可行的研究现在变得可行。