Suppr超能文献

通过最大化固定假阳性率下的真阳性率来组合生物标志物。

Combining biomarkers by maximizing the true positive rate for a fixed false positive rate.

机构信息

Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.

Department of Biostatistics, University of Washington, Seattle, WA, USA.

出版信息

Biom J. 2021 Aug;63(6):1223-1240. doi: 10.1002/bimj.202000210. Epub 2021 Apr 19.

Abstract

Biomarkers abound in many areas of clinical research, and often investigators are interested in combining them for diagnosis, prognosis, or screening. In many applications, the true positive rate (TPR) for a biomarker combination at a prespecified, clinically acceptable false positive rate (FPR) is the most relevant measure of predictive capacity. We propose a distribution-free method for constructing biomarker combinations by maximizing the TPR while constraining the FPR. Theoretical results demonstrate desirable properties of biomarker combinations produced by the new method. In simulations, the biomarker combination provided by our method demonstrated improved operating characteristics in a variety of scenarios when compared with alternative methods for constructing biomarker combinations. Thus, use of our method could lead to the development of better biomarker combinations, increasing the likelihood of clinical adoption.

摘要

生物标志物在临床研究的许多领域都有广泛应用,研究人员通常有兴趣将它们组合起来用于诊断、预后或筛查。在许多应用中,在规定的可接受的假阳性率 (FPR) 下,生物标志物组合的真阳性率 (TPR) 是预测能力的最相关度量标准。我们提出了一种无分布的方法,通过最大化 TPR 同时约束 FPR 来构建生物标志物组合。理论结果证明了新方法产生的生物标志物组合的理想特性。在模拟中,与构建生物标志物组合的其他方法相比,我们的方法提供的生物标志物组合在各种情况下均表现出更好的操作特性。因此,使用我们的方法可以开发出更好的生物标志物组合,从而增加临床应用的可能性。

相似文献

1
Combining biomarkers by maximizing the true positive rate for a fixed false positive rate.
Biom J. 2021 Aug;63(6):1223-1240. doi: 10.1002/bimj.202000210. Epub 2021 Apr 19.
2
Developing biomarker combinations in multicenter studies via direct maximization and penalization.
Stat Med. 2020 Oct 30;39(24):3412-3426. doi: 10.1002/sim.8673. Epub 2020 Aug 13.
3
Biomarker combinations for diagnosis and prognosis in multicenter studies: Principles and methods.
Stat Methods Med Res. 2019 Apr;28(4):969-985. doi: 10.1177/0962280217740392. Epub 2017 Nov 20.
4
Cancer Screening Markers: A Simple Strategy to Substantially Reduce the Sample Size for Validation.
Med Decis Making. 2019 Feb;39(2):130-136. doi: 10.1177/0272989X18819792. Epub 2019 Jan 18.
6
Effect of human variability on independent double reading in screening mammography.
Acad Radiol. 1996 Nov;3(11):891-7. doi: 10.1016/s1076-6332(96)80296-0.
7
Two-way partial AUC and its properties.
Stat Methods Med Res. 2019 Jan;28(1):184-195. doi: 10.1177/0962280217718866. Epub 2017 Jul 14.
8
Simple method for comparing reliability of two serum tumour markers in breast carcinoma.
J Clin Pathol. 1994 Feb;47(2):134-7. doi: 10.1136/jcp.47.2.134.
9
10
Estimating the accuracy of screening mammography: a meta-analysis.
Am J Prev Med. 1998 Feb;14(2):143-53. doi: 10.1016/s0749-3797(97)00019-6.

引用本文的文献

2
LINEAR BIOMARKER COMBINATION FOR CONSTRAINED CLASSIFICATION.
Ann Stat. 2022 Oct;50(5):2793-2815. doi: 10.1214/22-aos2210. Epub 2022 Oct 27.
3
Development of a Multiprotein Classifier for the Detection of Early Stage Ovarian Cancer.
Cancers (Basel). 2022 Jun 23;14(13):3077. doi: 10.3390/cancers14133077.

本文引用的文献

1
Combining multiple biomarkers linearly to maximize the partial area under the ROC curve.
Stat Med. 2018 Feb 20;37(4):627-642. doi: 10.1002/sim.7535. Epub 2017 Oct 30.
2
Combining biomarkers linearly and nonlinearly for classification using the area under the ROC curve.
Stat Med. 2016 Sep 20;35(21):3792-809. doi: 10.1002/sim.6956. Epub 2016 Apr 5.
3
Flexible combination of multiple diagnostic biomarkers to improve diagnostic accuracy.
BMC Med Res Methodol. 2015 Oct 31;15:94. doi: 10.1186/s12874-015-0085-z.
4
Optimal linear combinations of multiple diagnostic biomarkers based on Youden index.
Stat Med. 2014 Apr 15;33(8):1426-40. doi: 10.1002/sim.6046. Epub 2013 Dec 6.
5
Partial AUC maximization for essential gene prediction using genetic algorithms.
BMB Rep. 2013 Jan;46(1):41-6. doi: 10.5483/bmbrep.2013.46.1.159.
6
Marker selection via maximizing the partial area under the ROC curve of linear risk scores.
Biostatistics. 2011 Apr;12(2):369-85. doi: 10.1093/biostatistics/kxq052. Epub 2010 Aug 20.
7
Optimal Combinations of Diagnostic Tests Based on AUC.
Biometrics. 2011 Jun;67(2):568-76. doi: 10.1111/j.1541-0420.2010.01450.x. Epub 2010 Jun 16.
9
A boosting method for maximizing the partial area under the ROC curve.
BMC Bioinformatics. 2010 Jun 10;11:314. doi: 10.1186/1471-2105-11-314.
10
Adjusting for covariates in studies of diagnostic, screening, or prognostic markers: an old concept in a new setting.
Am J Epidemiol. 2008 Jul 1;168(1):89-97. doi: 10.1093/aje/kwn099. Epub 2008 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验