From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan.
the Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and.
J Biol Chem. 2019 Mar 22;294(12):4425-4436. doi: 10.1074/jbc.RA118.005208. Epub 2019 Jan 18.
Aberrant glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors. However, how PI4KIIα-mediated sialyation of cell surface proteins is regulated remains unclear. In this study, using several cell lines, CRISPR/Cas9-based gene knockout and short hairpin RNA-mediated silencing, RT-PCR, lentivirus-mediated overexpression, and immunoblotting methods, we confirmed that PI4KIIα knockdown suppresses the sialylation of glycans on the cell surface, in Akt phosphorylation and activation, and integrin α3-mediated cell migration of MDA-MB-231 breast cancer cells. Interestingly, both integrin α3β1 and PI4KIIα co-localized to the trans-Golgi network, where they physically interacted with each other, and PI4KIIα specifically associated with integrin α3 but not α5. Furthermore, overexpression of both integrin α3β1 and PI4KIIα induced hypersialylation. Conversely, integrin α3 knockout significantly inhibited the sialylation of membrane proteins, such as the epidermal growth factor receptor, as well as in total cell lysates. These findings suggest that the malignant phenotype of cancer cells is affected by a sialylation mechanism that is regulated by a complex between PI4KIIα and integrin α3β1.
糖蛋白中糖链的异常唾液酸化与癌细胞的恶性表型和转移潜能密切相关,包括细胞黏附、迁移和生长。最近,定位于高尔基体内质网的磷脂酰肌醇 4-激酶 IIα(PI4KIIα)被鉴定为高尔基磷蛋白 3(GOLPH3)和高尔基体内囊泡运输的调节剂。GOLPH3 是 PI4KIIα 的靶点,有助于锚定唾液酸转移酶,从而调节细胞表面受体的唾液酸化。然而,PI4KIIα 介导的细胞表面蛋白唾液酸化如何被调节尚不清楚。在这项研究中,我们使用几种细胞系,基于 CRISPR/Cas9 的基因敲除和短发夹 RNA 介导的沉默,RT-PCR、慢病毒介导的过表达和免疫印迹方法,证实了 PI4KIIα 敲低抑制了 MDA-MB-231 乳腺癌细胞表面糖基的唾液酸化、Akt 磷酸化和激活以及整合素 α3 介导的细胞迁移。有趣的是,整合素 α3β1 和 PI4KIIα 都共定位到高尔基体内质网,在那里它们相互物理相互作用,PI4KIIα 特异性与整合素 α3 而不是 α5 结合。此外,整合素 α3β1 和 PI4KIIα 的过表达诱导了过度唾液酸化。相反,整合素 α3 敲除显著抑制了膜蛋白(如表皮生长因子受体)的唾液酸化,以及总细胞裂解物中的唾液酸化。这些发现表明,癌细胞的恶性表型受到 PI4KIIα 和整合素 α3β1 复合物调节的唾液酸化机制的影响。