From the Departments of Molecular & Integrative Physiology and.
the Department of Genetics, Human Genetics Institute, and Rutgers Cancer Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854.
J Biol Chem. 2019 Mar 15;294(11):3974-3986. doi: 10.1074/jbc.RA118.005549. Epub 2019 Jan 18.
Hypoxia-inducible factor 2α (HIF2α) directly regulates a battery of genes essential for intestinal iron absorption. Interestingly, iron deficiency and overload disorders do not result in increased intestinal expression of glycolytic or angiogenic HIF2α target genes. Similarly, inflammatory and tumor foci can induce a distinct subset of HIF2α target genes These observations indicate that different stimuli activate distinct subsets of HIF2α target genes via mechanisms that remain unclear. Here, we conducted a high-throughput siRNA-based screen to identify genes that regulate HIF2α's transcriptional activity on the promoter of the iron transporter gene (). SMAD family member 3 (SMAD3) and SMAD4 were identified as potential transcriptional repressors. Further analysis revealed that SMAD4 signaling selectively represses iron-absorptive gene promoters but not the inflammatory or glycolytic HIF2α or HIF1α target genes. Moreover, the highly homologous SMAD2 did not alter HIF2α transcriptional activity. During iron deficiency, SMAD3 and SMAD4 expression was significantly decreased via proteasomal degradation, allowing for derepression of iron target genes. Several iron-regulatory genes contain a SMAD-binding element (SBE) in their proximal promoters; however, mutation of the putative SBE on the promoter did not alter the repressive function of SMAD3 or SMAD4. Importantly, the transcription factor forkhead box protein A1 (FOXA1) was critical in SMAD4-induced repression, and DNA binding of SMAD4 was essential for the repression of HIF2α activity, suggesting an indirect repressive mechanism through DNA binding. These results provide mechanistic clues to how HIF signaling can be regulated by different cellular cues.
缺氧诱导因子 2α(HIF2α)直接调节一系列对肠道铁吸收至关重要的基因。有趣的是,铁缺乏和过载疾病不会导致糖酵解或血管生成 HIF2α 靶基因的肠道表达增加。同样,炎症和肿瘤病灶可以诱导 HIF2α 靶基因的一个独特子集。这些观察结果表明,不同的刺激通过仍不清楚的机制激活不同的 HIF2α 靶基因子集。在这里,我们进行了基于高通量 siRNA 的筛选,以鉴定调节 HIF2α 在铁转运蛋白基因()启动子上转录活性的基因。发现 SMAD 家族成员 3(SMAD3)和 SMAD4 是潜在的转录抑制剂。进一步分析表明,SMAD4 信号选择性地抑制铁吸收基因启动子,但不抑制炎症或糖酵解 HIF2α 或 HIF1α 靶基因。此外,高度同源的 SMAD2 不会改变 HIF2α 的转录活性。在缺铁期间,SMAD3 和 SMAD4 的表达通过蛋白酶体降解显著降低,从而使铁靶基因去抑制。几个铁调节基因在其近端启动子中含有 SMAD 结合元件(SBE);然而,在 启动子上突变假定的 SBE 并没有改变 SMAD3 或 SMAD4 的抑制功能。重要的是,转录因子叉头框蛋白 A1(FOXA1)在 SMAD4 诱导的 抑制中至关重要,并且 SMAD4 的 DNA 结合对于抑制 HIF2α 活性是必需的,这表明通过 DNA 结合存在间接抑制机制。这些结果为 HIF 信号如何被不同的细胞信号调节提供了机制线索。