Suppr超能文献

SMAD 家族成员 3(SMAD3)和 SMAD4 抑制 HIF2α 依赖性铁调节基因。

SMAD family member 3 (SMAD3) and SMAD4 repress HIF2α-dependent iron-regulatory genes.

机构信息

From the Departments of Molecular & Integrative Physiology and.

the Department of Genetics, Human Genetics Institute, and Rutgers Cancer Institute, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854.

出版信息

J Biol Chem. 2019 Mar 15;294(11):3974-3986. doi: 10.1074/jbc.RA118.005549. Epub 2019 Jan 18.

Abstract

Hypoxia-inducible factor 2α (HIF2α) directly regulates a battery of genes essential for intestinal iron absorption. Interestingly, iron deficiency and overload disorders do not result in increased intestinal expression of glycolytic or angiogenic HIF2α target genes. Similarly, inflammatory and tumor foci can induce a distinct subset of HIF2α target genes These observations indicate that different stimuli activate distinct subsets of HIF2α target genes via mechanisms that remain unclear. Here, we conducted a high-throughput siRNA-based screen to identify genes that regulate HIF2α's transcriptional activity on the promoter of the iron transporter gene (). SMAD family member 3 (SMAD3) and SMAD4 were identified as potential transcriptional repressors. Further analysis revealed that SMAD4 signaling selectively represses iron-absorptive gene promoters but not the inflammatory or glycolytic HIF2α or HIF1α target genes. Moreover, the highly homologous SMAD2 did not alter HIF2α transcriptional activity. During iron deficiency, SMAD3 and SMAD4 expression was significantly decreased via proteasomal degradation, allowing for derepression of iron target genes. Several iron-regulatory genes contain a SMAD-binding element (SBE) in their proximal promoters; however, mutation of the putative SBE on the promoter did not alter the repressive function of SMAD3 or SMAD4. Importantly, the transcription factor forkhead box protein A1 (FOXA1) was critical in SMAD4-induced repression, and DNA binding of SMAD4 was essential for the repression of HIF2α activity, suggesting an indirect repressive mechanism through DNA binding. These results provide mechanistic clues to how HIF signaling can be regulated by different cellular cues.

摘要

缺氧诱导因子 2α(HIF2α)直接调节一系列对肠道铁吸收至关重要的基因。有趣的是,铁缺乏和过载疾病不会导致糖酵解或血管生成 HIF2α 靶基因的肠道表达增加。同样,炎症和肿瘤病灶可以诱导 HIF2α 靶基因的一个独特子集。这些观察结果表明,不同的刺激通过仍不清楚的机制激活不同的 HIF2α 靶基因子集。在这里,我们进行了基于高通量 siRNA 的筛选,以鉴定调节 HIF2α 在铁转运蛋白基因()启动子上转录活性的基因。发现 SMAD 家族成员 3(SMAD3)和 SMAD4 是潜在的转录抑制剂。进一步分析表明,SMAD4 信号选择性地抑制铁吸收基因启动子,但不抑制炎症或糖酵解 HIF2α 或 HIF1α 靶基因。此外,高度同源的 SMAD2 不会改变 HIF2α 的转录活性。在缺铁期间,SMAD3 和 SMAD4 的表达通过蛋白酶体降解显著降低,从而使铁靶基因去抑制。几个铁调节基因在其近端启动子中含有 SMAD 结合元件(SBE);然而,在 启动子上突变假定的 SBE 并没有改变 SMAD3 或 SMAD4 的抑制功能。重要的是,转录因子叉头框蛋白 A1(FOXA1)在 SMAD4 诱导的 抑制中至关重要,并且 SMAD4 的 DNA 结合对于抑制 HIF2α 活性是必需的,这表明通过 DNA 结合存在间接抑制机制。这些结果为 HIF 信号如何被不同的细胞信号调节提供了机制线索。

相似文献

1
SMAD family member 3 (SMAD3) and SMAD4 repress HIF2α-dependent iron-regulatory genes.
J Biol Chem. 2019 Mar 15;294(11):3974-3986. doi: 10.1074/jbc.RA118.005549. Epub 2019 Jan 18.
2
SMADs and FOXL2 synergistically regulate murine FSHbeta transcription via a conserved proximal promoter element.
Mol Endocrinol. 2011 Jul;25(7):1170-83. doi: 10.1210/me.2010-0480. Epub 2011 May 26.
3
The novel PIAS-like protein hZimp10 enhances Smad transcriptional activity.
J Biol Chem. 2006 Aug 18;281(33):23748-56. doi: 10.1074/jbc.M508365200. Epub 2006 Jun 15.
4
Functions of Smad Transcription Factors in TGF-β1-Induced Selectin Ligand Expression on Murine CD4 Th Cells.
J Immunol. 2016 Oct 1;197(7):2627-34. doi: 10.4049/jimmunol.1600723. Epub 2016 Aug 19.
6
Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia.
Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4922-30. doi: 10.1073/pnas.1314197110. Epub 2013 Nov 26.
7
Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3.
J Biol Chem. 2001 Oct 19;276(42):38502-10. doi: 10.1074/jbc.M107081200. Epub 2001 Aug 13.
9
A comparative analysis of Smad-responsive motifs identifies multiple regulatory inputs for TGF-β transcriptional activation.
J Biol Chem. 2019 Oct 18;294(42):15466-15479. doi: 10.1074/jbc.RA119.009877. Epub 2019 Sep 3.

引用本文的文献

2
Mechanisms controlling cellular and systemic iron homeostasis.
Nat Rev Mol Cell Biol. 2024 Feb;25(2):133-155. doi: 10.1038/s41580-023-00648-1. Epub 2023 Oct 2.
3
Gut microbiota bridges the iron homeostasis and host health.
Sci China Life Sci. 2023 Sep;66(9):1952-1975. doi: 10.1007/s11427-022-2302-5. Epub 2023 Jul 27.
4
Ferritinophagy, a form of autophagic ferroptosis: New insights into cancer treatment.
Front Pharmacol. 2022 Oct 21;13:1043344. doi: 10.3389/fphar.2022.1043344. eCollection 2022.
5
Meta-QTLs, ortho-MetaQTLs and candidate genes for grain Fe and Zn contents in wheat ( L.).
Physiol Mol Biol Plants. 2022 Mar;28(3):637-650. doi: 10.1007/s12298-022-01149-9. Epub 2022 Mar 25.
6
Integration and Visualization of Regulatory Elements and Variations of the Gene in Human.
Genes (Basel). 2021 Nov 13;12(11):1793. doi: 10.3390/genes12111793.
8
Time-Varying Gene Network Analysis of Human Prefrontal Cortex Development.
Front Genet. 2020 Nov 16;11:574543. doi: 10.3389/fgene.2020.574543. eCollection 2020.
9
SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis.
Cell Death Dis. 2020 May 15;11(5):373. doi: 10.1038/s41419-020-2578-x.
10
Creatine uptake regulates CD8 T cell antitumor immunity.
J Exp Med. 2019 Dec 2;216(12):2869-2882. doi: 10.1084/jem.20182044. Epub 2019 Oct 18.

本文引用的文献

2
Hypoxia-inducible factor 2α (HIF-2α) promotes colon cancer growth by potentiating Yes-associated protein 1 (YAP1) activity.
J Biol Chem. 2017 Oct 13;292(41):17046-17056. doi: 10.1074/jbc.M117.805655. Epub 2017 Aug 28.
3
Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity.
PLoS One. 2017 Jun 26;12(6):e0179889. doi: 10.1371/journal.pone.0179889. eCollection 2017.
4
Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies.
Trends Pharmacol Sci. 2017 Aug;38(8):669-686. doi: 10.1016/j.tips.2017.05.002. Epub 2017 Jun 12.
5
The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy.
Hypoxia (Auckl). 2015 Dec 11;3:83-92. doi: 10.2147/HP.S93413. eCollection 2015.
6
Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis.
Cell Metab. 2016 Sep 13;24(3):447-461. doi: 10.1016/j.cmet.2016.07.015. Epub 2016 Aug 18.
7
Hypoxia-inducible factors: a central link between inflammation and cancer.
J Clin Invest. 2016 Oct 3;126(10):3689-3698. doi: 10.1172/JCI84430. Epub 2016 Aug 15.
8
Exosomes: A Promising Factor Involved in Cancer Hypoxic Microenvironments.
Curr Med Chem. 2015;22(36):4189-95. doi: 10.2174/0929867322666150825163318.
9
Dormancy of cancer cells with suppression of AKT activity contributes to survival in chronic hypoxia.
PLoS One. 2014 Jun 6;9(6):e98858. doi: 10.1371/journal.pone.0098858. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验