Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.
Nanomedicine. 2019 Apr;17:82-93. doi: 10.1016/j.nano.2018.11.017. Epub 2019 Jan 17.
Macrophage recognition of nanoparticles is highly influenced by particle size and surface modification. Due to the lack of appropriate in vivo screening models, it is still challenging and time-consuming to characterize and optimize nanomedicines regarding this undesired clearance mechanism. Therefore, we validate zebrafish embryos as an emerging vertebrate screening tool to assess the macrophage sequestration of surface modified particulate formulations with varying particle size under realistic biological conditions. Liposomes with different PEG molecular weights (PEG350-PEG5000) at different PEG densities (3.0-10.0 mol%) and particle sizes between 60 and 120 nm were used as a well-established reference system showing various degrees of macrophage uptake. The results of in vitro experiments, zebrafish embryos, and in vivo rodent biodistribution studies were consistent, highlighting the validity of the newly introduced zebrafish macrophage clearance model. We hereby present a strategy for efficient, systematic and rapid nanomedicine optimization in order to facilitate the preclinical development of nanotherapeutics.
巨噬细胞对纳米颗粒的识别受颗粒大小和表面修饰的强烈影响。由于缺乏合适的体内筛选模型,因此对于这种非预期的清除机制,要对纳米药物进行特征描述和优化仍然具有挑战性和耗时。因此,我们验证了斑马鱼胚胎作为一种新兴的脊椎动物筛选工具,可在真实的生物学条件下评估具有不同粒径的经表面修饰的颗粒制剂中巨噬细胞的隔离情况。使用具有不同 PEG 密度(3.0-10.0 mol%)和粒径在 60 至 120nm 之间的不同 PEG 分子量(PEG350-PEG5000)的脂质体作为已建立的参考体系,显示出不同程度的巨噬细胞摄取。体外实验、斑马鱼胚胎和体内啮齿动物生物分布研究的结果一致,突出了新引入的斑马鱼巨噬细胞清除模型的有效性。我们在此提出了一种有效的、系统的和快速的纳米药物优化策略,以促进纳米治疗剂的临床前开发。