Suppr超能文献

超罕见遗传性代谢疾病患者筛查的推荐建议:我们从尼曼-匹克病 C 型中学到了什么?

Recommendations for patient screening in ultra-rare inherited metabolic diseases: what have we learned from Niemann-Pick disease type C?

机构信息

Neurogenetics Research Group, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain.

Insititute of Medical Genetics and Applied Genomics, Tübingen University, Tübingen, Germany.

出版信息

Orphanet J Rare Dis. 2019 Jan 21;14(1):20. doi: 10.1186/s13023-018-0985-1.

Abstract

BACKGROUND

Rare and ultra-rare diseases (URDs) are often chronic and life-threatening conditions that have a profound impact on sufferers and their families, but many are notoriously difficult to detect. Niemann-Pick disease type C (NP-C) serves to illustrate the challenges, benefits and pitfalls associated with screening for ultra-rare inborn errors of metabolism (IEMs). A comprehensive, non-systematic review of published information from NP-C screening studies was conducted, focusing on diagnostic methods and study designs that have been employed to date. As a key part of this analysis, data from both successful studies (where cases were positively identified) and unsuccessful studies (where the chosen approach failed to identify any cases) were included alongside information from our own experiences gained from the planning and execution of screening for NP-C. On this basis, best-practice recommendations for ultra-rare IEM screening are provided. Twenty-six published screening studies were identified and categorised according to study design into four groups: 1) prospective patient cohort and family-based secondary screenings (18 studies); 2) analyses of archived 'biobank' materials (one study); 3) medical chart review and bioinformatics data mining (five studies); and 4) newborn screening (two studies). NPC1/NPC2 sequencing was the most common primary screening method (Sanger sequencing in eight studies and next-generation sequencing [gene panel or exome sequencing] in five studies), followed by biomarker analyses (usually oxysterols) and clinical surveillance.

CONCLUSIONS

Historically, screening for NP-C has been based on single-patient studies, small case series, and targeted cohorts, but the emergence of new diagnostic methods over the last 5-10 years has provided opportunities to screen for NP-C on a larger scale. Combining clinical, biomarker and genetic diagnostic methods represents the most effective way to identify NP-C cases, while reducing the likelihood of misdiagnosis. Our recommendations are intended as a guide for planning screening protocols for ultra-rare IEMs in general.

摘要

背景

罕见病和超罕见病(URD)通常是慢性且危及生命的疾病,对患者及其家庭造成深远影响,但许多疾病的诊断极具挑战性。尼曼-匹克病 C 型(NP-C)可说明针对超罕见先天性代谢缺陷(IEM)进行筛查所面临的挑战、获益和陷阱。本研究对 NP-C 筛查研究的已发表信息进行了全面的非系统性综述,重点关注了迄今为止所采用的诊断方法和研究设计。作为该分析的关键部分,纳入了成功研究(其中病例得到了明确识别)和不成功研究(所选方法未能识别任何病例)的数据,以及我们从 NP-C 筛查的规划和实施中获得的自身经验信息。在此基础上,为超罕见 IEM 筛查提供了最佳实践建议。共确定了 26 项已发表的筛查研究,并根据研究设计分为四组进行分类:1)前瞻性患者队列和基于家族的二次筛查(18 项研究);2)存档“生物库”材料分析(一项研究);3)病历审查和生物信息学数据挖掘(五项研究);4)新生儿筛查(两项研究)。NPC1/NPC2 测序是最常见的一线筛查方法(八项研究中为 Sanger 测序,五项研究中为下一代测序[基因组合或外显子组测序]),其次是生物标志物分析(通常为氧化固醇)和临床监测。

结论

从历史上看,NP-C 的筛查基于单患者研究、小病例系列和靶向队列,但过去 5-10 年来新诊断方法的出现为更大规模的 NP-C 筛查提供了机会。结合临床、生物标志物和遗传诊断方法是识别 NP-C 病例的最有效方法,同时降低误诊的可能性。我们的建议旨在为一般超罕见 IEM 筛查方案的规划提供指导。

相似文献

4
The hidden Niemann-Pick type C patient: clinical niches for a rare inherited metabolic disease.
Curr Med Res Opin. 2017 May;33(5):877-890. doi: 10.1080/03007995.2017.1294054. Epub 2017 Mar 2.
7
Niemann-Pick type C: focus on the adolescent/adult onset form.
Int J Neurosci. 2016 Nov;126(11):963-71. doi: 10.3109/00207454.2016.1161623. Epub 2016 Mar 29.
9
[Niemann-Pick type C disease and psychosis: Two siblings].
Encephale. 2015 Jun;41(3):238-43. doi: 10.1016/j.encep.2014.08.007. Epub 2014 Sep 18.
10
NPC1 is enriched in unexplained early onset ataxia: a targeted high-throughput screening.
J Neurol. 2015 Nov;262(11):2557-63. doi: 10.1007/s00415-015-7889-y. Epub 2015 Sep 4.

引用本文的文献

1
Hypometabolism and atrophy patterns associated with Niemann-Pick type C.
EJNMMI Res. 2025 Feb 26;15(1):16. doi: 10.1186/s13550-025-01208-8.
3
Treatable Ataxias: How to Find the Needle in the Haystack?
J Mov Disord. 2022 Sep;15(3):206-226. doi: 10.14802/jmd.22069. Epub 2022 Sep 7.
6
Inhibition of Histone Deacetylases 1, 2, and 3 Enhances Clearance of Cholesterol Accumulation in Niemann-Pick C1 Fibroblasts.
ACS Pharmacol Transl Sci. 2021 May 27;4(3):1136-1148. doi: 10.1021/acsptsci.1c00033. eCollection 2021 Jun 11.
7
Gene Therapy in a Mouse Model of Niemann-Pick Disease Type C1.
Hum Gene Ther. 2021 Jun;32(11-12):589-598. doi: 10.1089/hum.2020.175. Epub 2021 Feb 22.
8
Hereditary Hypofibrinogenemia with Hepatic Storage.
Int J Mol Sci. 2020 Oct 22;21(21):7830. doi: 10.3390/ijms21217830.

本文引用的文献

1
Screening for Niemann-Pick Type C Disease in a Memory Clinic Cohort.
JIMD Rep. 2019;44:109-114. doi: 10.1007/8904_2018_133. Epub 2018 Sep 6.
2
Consensus clinical management guidelines for Niemann-Pick disease type C.
Orphanet J Rare Dis. 2018 Apr 6;13(1):50. doi: 10.1186/s13023-018-0785-7.
3
Recommendations for the detection and diagnosis of Niemann-Pick disease type C: An update.
Neurol Clin Pract. 2017 Dec;7(6):499-511. doi: 10.1212/CPJ.0000000000000399.
4
SERAC1 deficiency causes complicated HSP: evidence from a novel splice mutation in a large family.
J Med Genet. 2018 Jan;55(1):39-47. doi: 10.1136/jmedgenet-2017-104622. Epub 2017 Sep 15.
6
Niemann-Pick type C as a cause of progressive intellectual and neurological deterioration in childhood.
Dev Med Child Neurol. 2017 Sep;59(9):965-972. doi: 10.1111/dmcn.13476. Epub 2017 Jun 2.
7
The hidden Niemann-Pick type C patient: clinical niches for a rare inherited metabolic disease.
Curr Med Res Opin. 2017 May;33(5):877-890. doi: 10.1080/03007995.2017.1294054. Epub 2017 Mar 2.
9
A post hoc study on gene panel analysis for the diagnosis of dystonia.
Mov Disord. 2017 Apr;32(4):569-575. doi: 10.1002/mds.26937. Epub 2017 Feb 10.
10
Fostering collaborative research for rare genetic disease: the example of niemann-pick type C disease.
Orphanet J Rare Dis. 2016 Dec 1;11(1):161. doi: 10.1186/s13023-016-0540-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验