Suppr超能文献

Learning Algorithm for Boltzmann Machines With Additive Weight and Bias Noise.

作者信息

Sum John, Leung Chi Sing

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 Oct;30(10):3200-3204. doi: 10.1109/TNNLS.2018.2889072. Epub 2019 Jan 18.

Abstract

This brief presents analytical results on the effect of additive weight/bias noise on a Boltzmann machine (BM), in which the unit output is in {-1, 1} instead of {0, 1}. With such noise, it is found that the state distribution is yet another Boltzmann distribution but the temperature factor is elevated. Thus, the desired gradient ascent learning algorithm is derived, and the corresponding learning procedure is developed. This learning procedure is compared with the learning procedure applied to train a BM with noise. It is found that these two procedures are identical. Therefore, the learning algorithm for noise-free BMs is suitable for implementing as an online learning algorithm for an analog circuit-implemented BM, even if the variances of the additive weight noise and bias noise are unknown.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验