IEEE Trans Neural Netw Learn Syst. 2019 Sep;30(9):2840-2852. doi: 10.1109/TNNLS.2018.2885723. Epub 2019 Jan 16.
This paper deals with the finite-horizon quantized H state estimation problem for a class of discrete time-varying genetic regulatory networks with quantization effects under stochastic communication protocols (SCPs). To better reflect the data-driven flavor of today's biological research, the network measurements (typically gigabytes in size by high-throughput sequencing technologies) are transmitted to a remote state estimator via two independent communication networks of limited bandwidths. To lighten the communication loads and avoid undesired data collisions, the measurement outputs are quantized and then transmitted under two SCPs introduced to schedule the large-scale data transmissions. The purpose of this paper is to design a time-varying state estimator such that the error dynamics of the state estimation satisfies a prescribed H performance requirement over a finite horizon in the presence of nonlinearities, quantization effects, and SCPs. By utilizing the completing-the-square technique, sufficient conditions are derived to ensure the H estimation performance and the parameters of the state estimator are designed by solving coupled backward recursive Riccati difference equations. A numerical example is given to illustrate the effectiveness of the design scheme of the proposed state estimator.
本文针对一类具有量化效应的离散时变遗传调控网络,研究了在随机通信协议(SCP)下的有限时域量化 H 状态估计问题。为了更好地反映当今生物研究的数据驱动特点,网络测量值(通常通过高通量测序技术达到千兆字节大小)通过两个有限带宽的独立通信网络传输到远程状态估计器。为了减轻通信负载并避免不必要的数据冲突,测量输出在两个 SCP 下进行量化,然后进行调度以实现大规模数据传输。本文的目的是设计一个时变状态估计器,使得在存在非线性、量化效应和 SCP 的情况下,状态估计的误差动力学在有限时域内满足规定的 H 性能要求。通过利用完全平方技术,推导出了充分条件,以确保 H 估计性能,并通过求解耦合的反向递归 Riccati 差分方程来设计状态估计器的参数。给出了一个数值示例,以说明所提出的状态估计器的设计方案的有效性。