Suppr超能文献

具有随机变化拓扑结构的复杂网络的方差约束状态估计

Variance-Constrained State Estimation for Complex Networks With Randomly Varying Topologies.

作者信息

Dong Hongli, Hou Nan, Wang Zidong, Ren Weijian

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2757-2768. doi: 10.1109/TNNLS.2017.2700331. Epub 2017 May 23.

Abstract

This paper investigates the variance-constrained state estimation problem for a class of nonlinear time-varying complex networks with randomly varying topologies, stochastic inner coupling, and measurement quantization. A Kronecker delta function and Markovian jumping parameters are utilized to describe the random changes of network topologies. A Gaussian random variable is introduced to model the stochastic disturbances in the inner coupling of complex networks. As a kind of incomplete measurements, measurement quantization is taken into consideration so as to account for the signal distortion phenomenon in the transmission process. Stochastic nonlinearities with known statistical characteristics are utilized to describe the stochastic evolution of the complex networks. We aim to design a finite-horizon estimator, such that in the simultaneous presence of quantized measurements and stochastic inner coupling, the prescribed variance constraints on the estimation error and the desired performance requirements are guaranteed over a finite horizon. Sufficient conditions are established by means of a series of recursive linear matrix inequalities, and subsequently, the estimator gain parameters are derived. A simulation example is presented to illustrate the effectiveness and applicability of the proposed estimator design algorithm.

摘要

本文研究一类具有随机时变拓扑、随机内部耦合和测量量化的非线性时变复杂网络的方差约束状态估计问题。利用克罗内克δ函数和马尔可夫跳变参数来描述网络拓扑的随机变化。引入高斯随机变量对复杂网络内部耦合中的随机干扰进行建模。作为一种不完全测量,考虑测量量化以说明传输过程中的信号失真现象。利用具有已知统计特性的随机非线性来描述复杂网络的随机演化。我们旨在设计一种有限时域估计器,使得在同时存在量化测量和随机内部耦合的情况下,在有限时域内保证估计误差的规定方差约束和期望的性能要求。通过一系列递归线性矩阵不等式建立了充分条件,随后推导了估计器增益参数。给出了一个仿真例子来说明所提出的估计器设计算法的有效性和适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验