文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

整合来自多个组织的预测转录组可提高关联检测。

Integrating predicted transcriptome from multiple tissues improves association detection.

机构信息

Section of Genetic Medicine, The University of Chicago, Chicago, Illinois, United States of America.

Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America.

出版信息

PLoS Genet. 2019 Jan 22;15(1):e1007889. doi: 10.1371/journal.pgen.1007889. eCollection 2019 Jan.


DOI:10.1371/journal.pgen.1007889
PMID:30668570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6358100/
Abstract

Integration of genome-wide association studies (GWAS) and expression quantitative trait loci (eQTL) studies is needed to improve our understanding of the biological mechanisms underlying GWAS hits, and our ability to identify therapeutic targets. Gene-level association methods such as PrediXcan can prioritize candidate targets. However, limited eQTL sample sizes and absence of relevant developmental and disease context restrict our ability to detect associations. Here we propose an efficient statistical method (MultiXcan) that leverages the substantial sharing of eQTLs across tissues and contexts to improve our ability to identify potential target genes. MultiXcan integrates evidence across multiple panels using multivariate regression, which naturally takes into account the correlation structure. We apply our method to simulated and real traits from the UK Biobank and show that, in realistic settings, we can detect a larger set of significantly associated genes than using each panel separately. To improve applicability, we developed a summary result-based extension called S-MultiXcan, which we show yields highly concordant results with the individual level version when LD is well matched. Our multivariate model-based approach allowed us to use the individual level results as a gold standard to calibrate and develop a robust implementation of the summary-based extension. Results from our analysis as well as software and necessary resources to apply our method are publicly available.

摘要

需要整合全基因组关联研究(GWAS)和表达数量性状基因座(eQTL)研究,以提高我们对 GWAS 命中背后的生物学机制的理解,以及我们识别治疗靶点的能力。基因水平关联方法,如 PrediXcan,可以优先考虑候选靶点。然而,有限的 eQTL 样本量和缺乏相关的发育和疾病背景限制了我们检测关联的能力。在这里,我们提出了一种有效的统计方法(MultiXcan),该方法利用组织和背景之间大量共享的 eQTL 来提高我们识别潜在靶基因的能力。MultiXcan 使用多元回归整合多个面板的证据,自然考虑了相关性结构。我们将我们的方法应用于来自英国生物库的模拟和真实特征,并表明,在现实环境中,我们可以检测到更多与基因显著相关的基因,而不是单独使用每个面板。为了提高适用性,我们开发了一种基于汇总结果的扩展,称为 S-MultiXcan,当 LD 匹配良好时,我们表明该扩展与个体水平版本具有高度一致性。我们的基于多元模型的方法允许我们使用个体水平的结果作为金标准来校准和开发基于汇总的扩展的稳健实现。我们的分析结果以及应用我们方法所需的软件和必要资源都是公开的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/d604110f45fc/pgen.1007889.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/4b3d8fb14ccd/pgen.1007889.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/c103d7d328c3/pgen.1007889.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/2a4683081ed8/pgen.1007889.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/d604110f45fc/pgen.1007889.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/4b3d8fb14ccd/pgen.1007889.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/c103d7d328c3/pgen.1007889.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/2a4683081ed8/pgen.1007889.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a63/6358100/d604110f45fc/pgen.1007889.g004.jpg

相似文献

[1]
Integrating predicted transcriptome from multiple tissues improves association detection.

PLoS Genet. 2019-1-22

[2]
Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies.

PLoS Genet. 2021-4

[3]
Influence of tissue context on gene prioritization for predicted transcriptome-wide association studies.

Pac Symp Biocomput. 2019

[4]
Evaluation of PrediXcan for prioritizing GWAS associations and predicting gene expression.

Pac Symp Biocomput. 2018

[5]
Subset-based method for cross-tissue transcriptome-wide association studies improves power and interpretability.

HGG Adv. 2024-4-11

[6]
Statistical power of transcriptome-wide association studies.

Genet Epidemiol. 2022-12

[7]
How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?

Pac Symp Biocomput. 2018

[8]
MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity.

PLoS Genet. 2021-4

[9]
Transcriptome-wide association studies accounting for colocalization using Egger regression.

Genet Epidemiol. 2018-7

[10]
Partitioning gene-based variance of complex traits by gene score regression.

PLoS One. 2020-8-20

引用本文的文献

[1]
A Genome-Wide Association Study of Anti-Müllerian Hormone (AMH) Levels in Samoan Women.

Genes (Basel). 2025-6-30

[2]
The integration of genome-wide and transcriptome-wide association studies in neurodegenerative diseases: opportunities, challenges, and current methodological innovations.

Brief Bioinform. 2025-7-2

[3]
Tensor decomposition of multi-dimensional splicing events across multiple tissues to identify splicing-mediated risk genes associated with complex traits.

PLoS Comput Biol. 2025-7-21

[4]
Genome-Wide Association Study of COVID-19 Breakthrough Infections and Genetic Overlap with Other Diseases: A Study of the UK Biobank.

Int J Mol Sci. 2025-7-4

[5]
Mapping the regulatory genetic landscape of complex traits using a chicken advanced intercross line.

Nat Commun. 2025-7-1

[6]
Multi-tissue expression and splicing data prioritise anatomical subsite- and sex-specific colorectal cancer susceptibility genes.

Nat Commun. 2025-5-30

[7]
A Cross-Tissue Transcriptome-Wide Association Study Reveals Novel Susceptibility Genes for Diabetic Kidney Disease in the FinnGen Cohort.

Biomedicines. 2025-5-19

[8]
A multi-level gene-diet interaction analysis of fish oil and 14 polyunsaturated fatty acid traits identifies the FADS and GPR12 loci.

HGG Adv. 2025-5-21

[9]
Genome-wide association studies of binge eating behaviour and anorexia nervosa yield insights into the unique and shared biology of eating disorder phenotypes.

medRxiv. 2025-5-8

[10]
Integrating HiTOP and RDoC frameworks part II: shared and distinct biological mechanisms of externalizing and internalizing psychopathology.

Psychol Med. 2025-5-9

本文引用的文献

[1]
The UK Biobank resource with deep phenotyping and genomic data.

Nature. 2018-10-10

[2]
Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics.

Nat Commun. 2018-5-8

[3]
A Powerful Framework for Integrating eQTL and GWAS Summary Data.

Genetics. 2017-9-11

[4]
Phenome-wide heritability analysis of the UK Biobank.

PLoS Genet. 2017-4-7

[5]
RNA splicing is a primary link between genetic variation and disease.

Science. 2016-4-29

[6]
Integrative approaches for large-scale transcriptome-wide association studies.

Nat Genet. 2016-3

[7]
A global reference for human genetic variation.

Nature. 2015-10-1

[8]
A gene-based association method for mapping traits using reference transcriptome data.

Nat Genet. 2015-9

[9]
UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age.

PLoS Med. 2015-3-31

[10]
Second-generation PLINK: rising to the challenge of larger and richer datasets.

Gigascience. 2015-2-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索