Climate Change Science Institute & Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Tree Physiol. 2019 Apr 1;39(4):556-572. doi: 10.1093/treephys/tpy140.
We quantified seasonal CO2 assimilation capacities for seven dominant vascular species in a wet boreal forest peatland then applied data to a land surface model parametrized to the site (ELM-SPRUCE) to test if seasonality in photosynthetic parameters results in differences in simulated plant responses to elevated CO2 and temperature. We collected seasonal leaf-level gas exchange, nutrient content and stand allometric data from the field-layer community (i.e., Maianthemum trifolium (L.) Sloboda), understory shrubs (Rhododendron groenlandicum (Oeder) Kron and Judd, Chamaedaphne calyculata (L.) Moench., Kalmia polifolia Wangenh. and Vaccinium angustifolium Alton.) and overstory trees (Picea mariana (Mill.) B.S.P. and Larix laricina (Du Roi) K. Koch). We found significant interspecific seasonal differences in specific leaf area, nitrogen content (by area; Na) and photosynthetic parameters (i.e., maximum rates of Rubisco carboxylation (Vcmax25°C), electron transport (Jmax25°C) and dark respiration (Rd25°C)), but minimal correlation between foliar Na and Vcmax25°C, Jmax25°C or Rd25°C, which illustrates that nitrogen alone is not a good correlate for physiological processes such as Rubisco activity that can change seasonally in this system. ELM-SPRUCE was sensitive to the introduction of observed interspecific seasonality in Vcmax25°C, Jmax25°C and Rd25°C, leading to simulated enhancement of net primary production (NPP) using seasonally dynamic parameters as compared with use of static parameters. This pattern was particularly pronounced under simulations with higher temperature and elevated CO2, suggesting a key hypothesis to address with future empirical or observational studies as climate changes. Inclusion of species-specific seasonal photosynthetic parameters should improve estimates of boreal ecosystem-level NPP, especially if impacts of seasonal physiological ontogeny can be separated from seasonal thermal acclimation.
我们量化了湿地北方森林泥炭地七种主要维管束物种的季节性 CO2 同化能力,然后将数据应用于基于该地点的陆地表面模型(ELM-SPRUCE)中,以测试光合作用参数的季节性是否会导致模拟植物对升高的 CO2 和温度的响应产生差异。我们从野外采集了季节性叶片气体交换、养分含量和林分比测数据,这些数据来自于地被层群落(即三脉叶马兰(Maianthemum trifolium)(Sloboda))、下层灌木(挪威云杉(Rhododendron groenlandicum)(Oeder) Kron 和 Judd、加拿大越桔(Chamaedaphne calyculata)(L.)Moench.、北美圆叶白珠(Kalmia polifolia)Wangenh. 和狭叶越橘(Vaccinium angustifolium)Alton.)和上层树木(黑云杉(Picea mariana)(Mill.)B.S.P. 和拉瑞尔云杉(Larix laricina)(Du Roi)K. Koch)。我们发现,特定叶面积、氮含量(按面积;Na)和光合作用参数(即最大 RuBP 羧化酶(Vcmax25°C)、电子传递(Jmax25°C)和暗呼吸(Rd25°C))在种间存在显著的季节性差异,但叶片 Na 与 Vcmax25°C、Jmax25°C 或 Rd25°C 之间的相关性极小,这表明氮本身并不是 Rubisco 活性等生理过程的良好相关物,而在这个系统中,Rubisco 活性可能会随季节变化。ELM-SPRUCE 对观察到的 Vcmax25°C、Jmax25°C 和 Rd25°C 种间季节性的引入很敏感,这导致使用季节性动态参数模拟净初级生产力(NPP)的增强,与使用静态参数相比。在更高温度和升高的 CO2 下,这种模式更为明显,这表明随着气候变化,这是一个需要通过未来的实证或观测研究来解决的关键假设。包含特定物种的季节性光合作用参数应该会提高对北方生态系统水平 NPP 的估计,特别是如果能够将季节性生理发育与季节性热驯化区分开来的话。