Jensen Anna M, Warren Jeffrey M, Hanson Paul J, Childs Joanne, Wullschleger Stan D
Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6301, USA
Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6301, USA.
Ann Bot. 2015 Oct;116(5):821-32. doi: 10.1093/aob/mcv115. Epub 2015 Jul 28.
The carbon (C) balance of boreal terrestrial ecosystems is sensitive to increasing temperature, but the direction and thresholds of responses are uncertain. Annual C uptake in Picea and other evergreen boreal conifers is dependent on seasonal- and cohort-specific photosynthetic and respiratory temperature response functions, so this study examined the physiological significance of maintaining multiple foliar cohorts for Picea mariana trees within an ombrotrophic bog ecosystem in Minnesota, USA.
Measurements were taken on multiple cohorts of needles for photosynthetic capacity, foliar respiration (Rd) and leaf biochemistry and morphology of mature trees from April to October over 4 years. The results were applied to a simple model of canopy photosynthesis in order to simulate annual C uptake by cohort age under ambient and elevated temperature scenarios.
Temperature responses of key photosynthetic parameters [i.e. light-saturated rate of CO2 assimilation (Asat), rate of Rubisco carboxylation (Vcmax) and electron transport rate (Jmax)] were dependent on season and generally less responsive in the developing current-year (Y0) needles compared with 1-year-old (Y1) or 2-year-old (Y2) foliage. Temperature optimums ranged from 18·7 to 23·7, 31·3 to 38·3 and 28·7 to 36·7 °C for Asat, Vcmax and Jmax, respectively. Foliar cohorts differed in their morphology and photosynthetic capacity, which resulted in 64 % of modelled annual stand C uptake from Y1&2 cohorts (LAI 0·67 m(2 )m(-2)) and just 36 % from Y0 cohorts (LAI 0·52 m(2 )m(-2)). Under warmer climate change scenarios, the contribution of Y0 cohorts was even less; e.g. 31 % of annual C uptake for a modelled 9 °C rise in mean summer temperatures. Results suggest that net annual C uptake by P. mariana could increase under elevated temperature, and become more dependent on older foliar cohorts.
Collectively, this study illustrates the physiological and ecological significance of different foliar cohorts, and indicates the need for seasonal- and cohort-specific model parameterization when estimating C uptake capacity of boreal forest ecosystems under ambient or future temperature scenarios.
北方陆地生态系统的碳(C)平衡对气温升高敏感,但响应的方向和阈值尚不确定。云杉及其他北方常绿针叶树的年碳吸收量取决于特定季节和特定年龄组的光合及呼吸温度响应函数,因此本研究在美国明尼苏达州一个雨养泥炭藓沼泽生态系统中,考察了黑云杉维持多个叶龄组的生理意义。
在4年时间里,于4月至10月对成熟树木多个叶龄组的针叶进行光合能力、叶呼吸(Rd)以及叶片生物化学和形态的测定。将结果应用于一个简单的冠层光合作用模型,以模拟在当前环境温度和升高温度情景下不同年龄组的年碳吸收量。
关键光合参数[即二氧化碳同化的光饱和速率(Asat)、核酮糖-1,5-二磷酸羧化酶羧化速率(Vcmax)和电子传递速率(Jmax)]的温度响应取决于季节,与1年生(Y1)或2年生(Y2)叶片相比,当年生(Y0)发育中的针叶对温度的响应通常较小。Asat、Vcmax和Jmax的最适温度分别为18.7至23.7、31.3至38.3和28.7至36.7℃。不同叶龄组在形态和光合能力上存在差异,这导致模拟的林分年碳吸收量中,64%来自Y1和Y2叶龄组(叶面积指数为0.67 m² m⁻²),而Y0叶龄组仅占36%(叶面积指数为0.52 m² m⁻²)。在气候变暖情景下,Y0叶龄组的贡献更小;例如,模拟夏季平均气温升高9℃时,年碳吸收量的31%来自Y0叶龄组。结果表明,气温升高时黑云杉的年净碳吸收量可能增加,且对较老叶龄组的依赖程度更高。
总体而言,本研究阐明了不同叶龄组的生理和生态意义,并表明在估算当前环境温度或未来温度情景下北方森林生态系统的碳吸收能力时,需要进行特定季节和特定叶龄组的模型参数化。