Huss Wendy J, Hu Qiang, Glenn Sean T, Gangavarapu Kalyan J, Wang Jianmin, Luce Jesse D, Quinn Paul K, Brese Elizabeth A, Zhan Fenglin, Conroy Jeffrey M, Paragh Gyorgy, Foster Barbara A, Morrison Carl D, Liu Song, Wei Lei
Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
Departments of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.
Hum Hered. 2018;83(3):153-162. doi: 10.1159/000490506. Epub 2019 Jan 22.
Advances in single-cell sequencing provide unprecedented opportunities for clinical examination of circulating tumor cells, cancer stem cells, and other rare cells responsible for disease progression and drug resistance. On the genomic level, single-cell whole exome sequencing (scWES) started to gain popularity with its unique potentials in characterizing mutational landscapes at a single-cell level. Currently, there is little known about the performance of different exome capture kits in scWES. Nextera rapid capture (NXT; Illumina, Inc.) has been the only exome capture kit recommended for scWES by Fluidigm C1, a widely accessed system in single-cell preparation.
In this study, we compared the performance of NXT following Fluidigm's protocol with Agilent SureSelectXT Target Enrichment System (AGL), another exome capture kit widely used for bulk sequencing. We created DNA libraries of 192 single cells isolated from spheres grown from a melanoma specimen using Fluidigm C1. Twelve high-yield cells were selected to perform dual-exome capture and sequencing using AGL and NXT in parallel. After mapping and coverage analysis, AGL outperformed NXT in coverage uniformity, mapping rates of reads, exome capture rates, and low PCR duplicate rates. For germline variant calling, AGL achieved better performance in overlap with known variants in dbSNP and transition-transversion ratios. Using calls from high coverage bulk sequencing from blood DNA as the golden standard, AGL-based scWES demonstrated high positive predictive values, and medium to high sensitivity. Lastly, we evaluated somatic mutation calling by comparing single-cell data with the matched blood sequence as control. On average, 300 mutations were identified in each cell. In 10 of 12 cells, higher numbers of mutations were identified using AGL than NXT, probably caused by coverage depth. When mutations are adequately covered in both AGL and NXT data, the two methods showed very high concordance (93-100% per cell).
Our results suggest that AGL can also be used for scWES when there is sufficient DNA, and it yields better data quality than the current Fluidigm's protocol using NXT.
单细胞测序技术的进步为循环肿瘤细胞、癌症干细胞及其他导致疾病进展和耐药性的稀有细胞的临床检测提供了前所未有的机遇。在基因组水平上,单细胞全外显子组测序(scWES)凭借其在单细胞水平上描绘突变图谱的独特潜力开始受到欢迎。目前,对于不同外显子捕获试剂盒在scWES中的性能了解甚少。Nextera快速捕获试剂盒(NXT;Illumina公司)是唯一一款被Fluidigm C1推荐用于scWES的外显子捕获试剂盒,Fluidigm C1是单细胞制备中广泛使用的系统。
在本研究中,我们将按照Fluidigm方案使用的NXT与另一种广泛用于批量测序的外显子捕获试剂盒——安捷伦SureSelectXT目标富集系统(AGL)的性能进行了比较。我们使用Fluidigm C1从黑色素瘤标本培养的球体中分离出192个单细胞,构建了DNA文库。选择12个高产细胞,同时使用AGL和NXT进行双外显子捕获和测序。经过比对和覆盖度分析,AGL在覆盖均匀性、 reads比对率、外显子捕获率和低PCR重复率方面均优于NXT。对于种系变异检测,AGL在与dbSNP中已知变异的重叠率和转换-颠换比率方面表现更好。以血液DNA的高覆盖度批量测序结果作为金标准,基于AGL的scWES显示出较高的阳性预测值以及中等到高的灵敏度。最后,我们通过将单细胞数据与匹配的血液序列作为对照来评估体细胞突变检测。平均每个细胞鉴定出300个突变。在12个细胞中的10个细胞中,使用AGL鉴定出的突变数量多于NXT,这可能是由覆盖深度导致的。当AGL和NXT数据中突变均得到充分覆盖时,两种方法显示出非常高的一致性(每个细胞93%-100%)。
我们的结果表明,当有足够的DNA时,AGL也可用于scWES,并且它产生的数据质量优于目前使用NXT的Fluidigm方案。