Suppr超能文献

RNase HIII 对于. 中的冈崎片段加工很重要。

RNase HIII Is Important for Okazaki Fragment Processing in .

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA

出版信息

J Bacteriol. 2019 Mar 13;201(7). doi: 10.1128/JB.00686-18. Print 2019 Apr 1.

Abstract

RNA-DNA hybrids are common in chromosomal DNA. Persistent RNA-DNA hybrids result in replication fork stress, DNA breaks, and neurological disorders in humans. During replication, Okazaki fragment synthesis relies on frequent RNA primer placement, providing one of the most prominent forms of covalent RNA-DNA strands The mechanism of Okazaki fragment maturation, which involves RNA removal and subsequent DNA replacement, in bacteria lacking RNase HI remains unclear. In this work, we reconstituted repair of a linear model Okazaki fragment using purified recombinant enzymes from We showed that RNase HII and HIII are capable of incision on Okazaki fragments and that both enzymes show mild stimulation by single-stranded DNA binding protein (SSB). We also showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation Furthermore, we found that YpcP is a 5' to 3' nuclease that can act on a wide variety of RNA- and DNA-containing substrates and exhibits preference for degrading RNA in model Okazaki fragments. Together, our data showed that RNase HIII and DNA polymerase I provide the primary pathway for Okazaki fragment maturation, whereas YpcP also contributes to the removal of RNA from an Okazaki fragment All cells are required to resolve the different types of RNA-DNA hybrids that form When RNA-DNA hybrids persist, cells experience an increase in mutation rate and problems with DNA replication. Okazaki fragment synthesis on the lagging strand requires an RNA primer to begin synthesis of each fragment. The mechanism of RNA removal from Okazaki fragments remains unknown in bacteria that lack RNase HI. We examined Okazaki fragment processing and found that RNase HIII in conjunction with DNA polymerase I represent the most efficient repair pathway. We also assessed the contribution of YpcP and found that YpcP is a 5' to 3' exonuclease that prefers RNA substrates with activity on Okazaki and flap substrates .

摘要

RNA-DNA 杂交体在染色体 DNA 中很常见。持续存在的 RNA-DNA 杂交体会导致复制叉压力、DNA 断裂,并在人类中引发神经紊乱。在复制过程中,冈崎片段的合成依赖于频繁的 RNA 引物放置,这提供了最突出的共价 RNA-DNA 链形式之一。在缺乏 RNase HI 的细菌中,冈崎片段成熟的机制,包括 RNA 去除和随后的 DNA 替换,仍然不清楚。在这项工作中,我们使用来自的纯化重组酶重新构建了线性模型冈崎片段的修复。我们表明,RNase HII 和 HIII 能够在冈崎片段上进行切割,并且两种酶都显示出对单链 DNA 结合蛋白(SSB)的轻微刺激。我们还表明,RNase HIII 和 DNA 聚合酶 I 为冈崎片段成熟提供了主要途径。此外,我们发现 YpcP 是一种 5' 到 3' 核酸内切酶,能够作用于多种含有 RNA 和 DNA 的底物,并表现出在模型冈崎片段中降解 RNA 的偏好。总之,我们的数据表明,RNase HIII 和 DNA 聚合酶 I 为冈崎片段成熟提供了主要途径,而 YpcP 也有助于从冈崎片段中去除 RNA。所有细胞都需要解决形成的不同类型的 RNA-DNA 杂交体。当 RNA-DNA 杂交体持续存在时,细胞会经历突变率增加和 DNA 复制问题。滞后链上的冈崎片段合成需要 RNA 引物来开始每个片段的合成。在缺乏 RNase HI 的细菌中,从冈崎片段中去除 RNA 的机制仍然未知。我们检查了冈崎片段的加工,并发现 RNase HIII 与 DNA 聚合酶 I 一起代表最有效的修复途径。我们还评估了 YpcP 的贡献,并发现 YpcP 是一种 5' 到 3' 外切核酸酶,它偏爱具有在冈崎和瓣状底物上活性的 RNA 底物。

相似文献

1

引用本文的文献

2
Z-form DNA-RNA hybrid blocks DNA replication.Z型DNA-RNA杂交体阻断DNA复制。
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf135.

本文引用的文献

2
Ribonucleotide discrimination by translesion synthesis DNA polymerases.经错配修复合成 DNA 聚合酶的核苷酸判别。
Crit Rev Biochem Mol Biol. 2018 Aug;53(4):382-402. doi: 10.1080/10409238.2018.1483889. Epub 2018 Jul 4.
5
Mutagenic cost of ribonucleotides in bacterial DNA.细菌 DNA 中核苷酸的诱变代价。
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):11733-11738. doi: 10.1073/pnas.1710995114. Epub 2017 Oct 16.
9
Ribonucleotides in bacterial DNA.细菌DNA中的核糖核苷酸。
Crit Rev Biochem Mol Biol. 2015;50(3):181-93. doi: 10.3109/10409238.2014.981647. Epub 2014 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验