Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093;
Institute of Earth and Planetary Science, School of Geosciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1984-1991. doi: 10.1073/pnas.1810797116. Epub 2019 Jan 22.
Paleomagnetic observations provide valuable evidence of the strength of magnetic fields present during evolution of the Solar System. Such information provides important constraints on physical processes responsible for rapid accretion of the protoplanetesimal disk. For this purpose, magnetic recordings must be stable and resist magnetic overprints from thermal events and viscous acquisition over many billions of years. A lack of comprehensive understanding of magnetic domain structures carrying remanence has, until now, prevented accurate estimates of the uncertainty of recording fidelity in almost all paleomagnetic samples. Recent computational advances allow detailed analysis of magnetic domain structures in iron particles as a function of grain morphology, size, and temperature. Our results show that uniformly magnetized equidimensional iron particles do not provide stable recordings, but instead larger grains containing single-vortex domain structures have very large remanences and high thermal stability-both increasing rapidly with grain size. We derive curves relating magnetic thermal and temporal stability demonstrating that cubes (>35 nm) and spheres (>55 nm) are likely capable of preserving magnetic recordings from the formation of the Solar System. Additionally, we model paleomagnetic demagnetization curves for a variety of grain size distributions and find that unless a sample is dominated by grains at the superparamagnetic size boundary, the majority of remanence will block at high temperatures ([Formula: see text]C of Curie point). We conclude that iron and kamacite (low Ni content FeNi) particles are almost ideal natural recorders, assuming that there is no chemical or magnetic alteration during sampling, storage, or laboratory measurement.
古地磁观测为太阳系演化过程中磁场强度提供了有价值的证据。这些信息对导致原行星盘快速吸积的物理过程提供了重要的限制。为此,磁记录必须稳定,并且能够抵抗热事件和粘性积累带来的磁场重写,这种积累过程需要数十亿年。由于缺乏对承载剩余磁化强度的磁畴结构的全面了解,到目前为止,几乎所有古地磁样本的记录保真度的不确定性都无法进行准确估计。最近的计算进展允许对铁颗粒中的磁畴结构进行详细分析,分析的内容包括晶粒形态、尺寸和温度。我们的研究结果表明,各向同性磁化的等轴铁颗粒不能提供稳定的记录,而包含单涡旋畴结构的较大颗粒具有非常大的剩余磁化强度和高热稳定性——这两种特性都随晶粒尺寸的增加而迅速增加。我们得出了与磁热和时间稳定性相关的曲线,证明了立方体(>35nm)和球体(>55nm)很可能有能力保存太阳系形成时的磁记录。此外,我们还对各种晶粒尺寸分布的古地磁退磁曲线进行了建模,发现除非样品主要由处于超顺磁尺寸边界的晶粒组成,否则大部分剩余磁化强度将在高温下被阻断([公式:见正文]摄氏度的居里点)。我们的结论是,铁和 kamacite(低镍含量的 FeNi)颗粒几乎是理想的天然记录器,前提是在采样、储存或实验室测量过程中没有化学或磁性变化。