Weiss Benjamin P, Bai Xue-Ning, Fu Roger R
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
Institute for Advanced Study and Department of Astronomy, Tsinghua University, Beijing, China.
Sci Adv. 2021 Jan 1;7(1). doi: 10.1126/sciadv.aba5967. Print 2021 Jan.
We review recent advances in our understanding of magnetism in the solar nebula and protoplanetary disks (PPDs). We discuss the implications of theory, meteorite measurements, and astronomical observations for planetary formation and nebular evolution. Paleomagnetic measurements indicate the presence of fields of 0.54 ± 0.21 G at ~1 to 3 astronomical units (AU) from the Sun and ≳0.06 G at 3 to 7 AU until >1.22 and >2.51 million years (Ma) after solar system formation, respectively. These intensities are consistent with those predicted to enable typical astronomically observed protostellar accretion rates of ~10 year, suggesting that magnetism played a central role in mass transport in PPDs. Paleomagnetic studies also indicate fields <0.006 G and <0.003 G in the inner and outer solar system by 3.94 and 4.89 Ma, respectively, consistent with the nebular gas having dispersed by this time. This is similar to the observed lifetimes of extrasolar protoplanetary disks.
我们回顾了近期在理解太阳星云和原行星盘(PPD)中的磁性方面取得的进展。我们讨论了理论、陨石测量和天文观测对行星形成和星云演化的影响。古地磁测量表明,在距离太阳约1至3天文单位(AU)处存在强度为0.54±0.21高斯的磁场,在3至7天文单位处磁场强度≳0.06高斯,分别对应太阳系形成后超过122万年和251万年。这些强度与预计能够实现典型天文观测到的约10 年的原恒星吸积率的强度一致,这表明磁性在原行星盘中的物质传输中起到了核心作用。古地磁研究还表明,在394万年和489万年后,太阳系内部和外部分别存在强度<0.006高斯和<0.003高斯的磁场,这与此时星云气体已经消散的情况一致。这与观测到的系外原行星盘的寿命相似。