Université de Lille, CNRS, UMR 8198 - Unité Evolution-Ecologie-Paléontologie, 59000, Lille, France.
InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium.
Heredity (Edinb). 2019 Jun;122(6):877-892. doi: 10.1038/s41437-019-0184-4. Epub 2019 Jan 22.
Anthropogenic activities are among the main drivers of global change and result in drastic habitat modifications, which represent strong evolutionary challenges for biological species that can either migrate, adapt, or disappear. In this context, understanding the genetics of adaptive traits is a prerequisite to enable long-term maintenance of populations under strong environmental constraints. To examine these processes, a QTL approach was developed here using the pseudometallophyte Arabidopsis halleri, which displays among-population adaptive divergence for tolerance to metallic pollution in soils. An F2 progeny was obtained by crossing individuals from metallicolous and non-metallicolous populations from Italian Alps, where intense metallurgic activities have created strong landscape heterogeneity. Then, we combined genome de novo assembly and genome resequencing of parental genotypes to obtain single-nucleotide polymorphism markers and achieve high-throughput genotyping of the progeny. QTL analysis was performed using growth parameters and photosynthetic yield to assess zinc tolerance levels. One major QTL was identified for photosynthetic yield. It explained about 27% of the phenotypic variance. Functional annotation of the QTL and gene expression analyses highlighted putative candidate genes. Our study represents a successful approach combining evolutionary genetics and advanced molecular tools, helping to better understand how a species can face new selective pressures of anthropogenic origin.
人为活动是全球变化的主要驱动因素之一,导致栖息地发生剧烈变化,这对生物物种构成了强烈的进化挑战,它们要么迁移、适应,要么消失。在这种情况下,了解适应性特征的遗传学是在强烈的环境限制下实现种群长期维持的前提。为了研究这些过程,本研究采用拟南芥(Arabidopsis halleri)作为模式生物,该物种具有对土壤中金属污染的耐受性的种群间适应性分化,开发了一种 QTL 方法。通过杂交来自意大利阿尔卑斯山的金属矿区和非金属矿区的个体获得了 F2 后代,在那里,强烈的冶金活动造成了强烈的景观异质性。然后,我们结合了基因组从头组装和亲本基因型的基因组重测序,获得了单核苷酸多态性标记,并对后代进行了高通量基因分型。使用生长参数和光合产量进行 QTL 分析,以评估锌耐受性水平。一个主要的 QTL 被鉴定为光合产量,它解释了约 27%的表型方差。对 QTL 的功能注释和基因表达分析突出了潜在的候选基因。我们的研究代表了一种成功的方法,将进化遗传学和先进的分子工具相结合,有助于更好地理解一个物种如何应对人为起源的新选择压力。